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The paper considers the complexity of verifying that a finite state system satisfies a 
number of definitions of information flow security. The systems model considered is one 
in which agents operate synchronously with awareness of the global clock. This enables 
timing based attacks to be captured, whereas previous work on this topic has dealt 
primarily with asynchronous systems. Versions of the notions of nondeducibility on inputs, 
nondeducibility on strategies, and an unwinding based notion are formulated for this 
model. All three notions are shown to be decidable, and their computational complexity 
is characterised.
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1. Introduction

Information flow security is concerned with the ability of agents in a system to deduce information about the activity 
and secrets of other agents. An information flow security policy prohibits some agents from knowing information about 
other agents. In an insecure system, an agent may nevertheless be able to make inferences from its observations, that 
enables it to deduce facts that it is not permitted to know. In particular, a class of system design flaws, referred to as covert 
channels, provide unintended ways for information to flow between agents, rendering a system insecure.

Defining what it is for a system to satisfy an information flow security policy has proved to be a subtle matter. A sub-
stantial literature has developed that provides a range of formal systems models and a range of definitions of security. In 
particular, in non-deterministic systems it has been found necessary to clarify the attack model, and distinguish between 
a passive attacker, which merely aims to deduce secret information from observations it is able to make from its position 
outside the security domain to be protected, and a more active attacker, that may have planted a Trojan Horse in the do-
main to be protected, and which seeks to use covert channels to pass information out of this domain. While this distinction 
turns out not to matter in asynchronous systems [18], in synchronous settings, it leads to two different definitions of se-
curity, known as Nondeducibility on Inputs (NDI) [41], and Nondeducibility on Strategies (NDS) [46]. (The term strategies 
in the latter refers to the strategies that a Trojan Horse may employ to pass information out of the security domain.) Con-
siderations of proof methods for security, and compositionality of these methods, have led to the introduction of further 
definitions of security, such as unwinding relations [24] and the associated definition of restrictiveness (RES) [34].
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One of the dimensions along which it makes sense to evaluate a definition of security is the practicality of verification 
techniques it enables. The early literature on the topic was motivated primarily by theorem proving verification methods, 
but in recent years the feasibility of automated verification techniques has begun to be investigated [17–20,26,43]. This 
recent work on automated verification of security has dealt primarily with asynchronous systems models.

Our contribution In this paper we investigate the complexity of automated verification for a range of definitions of informa-
tion flow in a synchronous systems model, in which agents are aware of a global clock and may use timing information in 
their deductions. This model is significant in that a number of timing-based covert channels been demonstrated [47,36] in 
modern processor designs, that leak information from one process to another with which it is not permitted to communi-
cate. When one of the processes is performing a cryptographic computation, this could lead the other to learn information 
about cryptographic keys in use [27]. It is therefore desirable that systems designs are free of timing-based covert channels. 
The asynchronous definitions of security that have been the focus of much of the literature fail to ensure this.

We study three definitions of security in this paper: synchronous versions of Nondeducibility on Inputs (NDI), Nonde-
ducibility on Strategies (NDS) and an unwinding based definition called Restrictiveness (RES). We consider just a two-agent 
setting, with agents L for a low security domain and H for a high security domain, and the (classical) security policy that 
permits H to know about L’s activity, but prohibits L from knowing about the activity of H . We show that all three def-
initions are decidable in finite state systems, and with complexities of PSPACE-complete for NDI, EXPSPACE-complete for 
NDS, and polynomial time for RES. A preliminary version of this paper, with only proof sketches, appeared in [14]. In this 
extended version, we provide detailed proofs for all results.

Outline of the paper The structure of the paper is as follows. Section 2 introduces our systems model and the three defini-
tions of security that we study. The following sections discuss the complexity results for each of these definitions. Section 3
deals with Nondeducibility on Inputs, Section 4 deals with Nondeducibility on Strategies, and Section 5 deals with the 
unwinding-based definition. Related literature is discussed in Section 6, and Section 7 makes some concluding remarks.

2. Semantic model and information flow security policies

2.1. Notation

Otherwise stated, we use standard notation from automata theory. Given a finite set (alphabet) A, we write A∗ for the 
set of finite words over A. We denote the empty word by ϵ , and for w ∈ A∗ , we write |w| for the length of w . For n ∈ N, 
An stands for the set of words of length n over A.

2.2. Synchronous machines

We work with a synchronous, non-deterministic state machine model for two agents, H and L. At each step of the 
computation, the agents (simultaneously) perform an action, which is resolved non-deterministically into a state transition. 
Both agents make (possibly incomplete) observations of the state of the system, and do so with awareness of the time. Time 
is discrete and measured by the number of steps in a computation.

Our machine model is given in the following definition. We do not make any finiteness assumptions in this section and 
the results in this section hold for this unconstrained model.

Definition 2.1 (Synchronous machine). A synchronous machine M is a tuple of the form ⟨S, A, s0, →, O , obs⟩ where

• S is the set of states,
• A = AH × AL is a set of joint actions (or joint inputs), each composed of an action of H from the set AH and an action 

of L from the set AL ,
• s0 is the initial state,
• →⊆ S × A × S defines state transitions resulting from the joint actions,
• O is a set of observations,
• obs : S × {H, L} → O represents the observations made by each agent in each state.

We write obsu for the mapping obs(·, u) : S → O , and s a−−→ s′ for ⟨s, a, s′⟩ ∈→. We assume that machines are input-enabled, 
by requiring that for all s ∈ S and a ∈ A, there exists s′ ∈ S such that s a−−→ s′ . We write Ms for the set of synchronous 
machines.

A run r of M is a finite sequence r = s0a1s1 . . .ansn with: ai ∈ A and si
ai+1−−→ si+1 for all i = 0 . . .n −1. We write R(M) for 

the set of all runs of M . We denote the sequence of joint actions a1 . . .an in the run r by Act(r). For each agent u ∈ {H, L}
we define proju : A → Au to be the projection of joint actions onto agent u’s actions. We write Actu(r) for the sequence of 
agent u’s actions in Act(r), e.g., if Act(r) = a1 . . .an then Actu(r) = proju(a1) . . . proju(an).
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2.3. Agent views

For a sequence w , and 1 ≤ i ≤ |w|, we write wi for the i-th element of w , and w[i] for the prefix of w up to the 
i-th element. We assume agents have a synchronous view of the machine, making an observation at each moment of time 
and being aware of each of their own actions (but not the actions of the other agent, which are given simultaneously 
and independently). Given a synchronous machine M , and u ∈ {H, L}, we define u views by the mapping viewu : R(M) →
O (Au O )∗ by:

viewu(s0a1s1a2 · · ·ansn) = obsu(s0)proju(a1)obsu(s1)proju(a2) · · · proju(an)obsu(sn).

Intuitively, this says that an agent’s view of a run is the history of all its state observations as well as its own actions in 
the run. We say that a sequence v of observations and actions is a possible u view in a system M if there exists a run r
of M such that v = viewu(r). The mapping viewu extends straightforwardly to sets of runs R ⊆ R(M), by viewu(R) =
{viewu(r) | r ∈ R}. We define the length |v| of a view v to be the number of actions it contains.

2.4. Expressiveness issues

We remark that the model is sufficiently expressive to represent an alternate model in which agents act in turn under 
the control of a scheduler. We say that a synchronous machine is scheduled if for each state s ∈ S either

• for all actions a ∈ AH and b, b′ ∈ AL , and states t ∈ S , s (a,b)−−−→ t iff s (a,b′)−−−→ t , or

• for all actions a, a′ ∈ AH and b ∈ AL , and states t ∈ S , s (a,b)−−−→ t iff s (a′,b)−−−→ t .

This definition says that state transitions in a scheduled machine are determined by the actions of at most one of the agents 
(the agent scheduled at that state); the other agent has no control over the transition. The model involving machines under 
the control of a scheduler of [44], in which at most one agent acts at each step of the computation, can be encoded as 
scheduled synchronous machines.

2.5. Notions of information flow security

We consider a number of different notions of information flow security. Each definition provides an interpretation for the 
security policy L → H , which states that information is permitted to flow from L to H , but not from H to L. Our definitions 
are intended for synchronous systems, in which the agents share a clock and are able to make deductions based on the 
time. (Much of the prior literature has concentrated on asynchronous systems, in which an agent may not know how many 
actions another agent has performed.)

2.5.1. Non-deducibility on inputs
The first definition we consider states that L should not be able to infer H actions from its view.

Definition 2.2. A synchronous machine M satisfies Non-Deducibility on Inputs (M ∈ NDI) if for every possible L view v in M
and every sequence of H actions α ∈ A|v|

H , there exists a run r ∈ R(M) such that ActH (r) = α and viewL(r) = v .

Intuitively, in a synchronous system, L always knows how many actions H has performed, since this is always identical to 
the number of actions that L has itself performed. In particular, if L has made view v , then L knows that H has performed 
|v| actions. The definition says that the system is secure if this is all that L can learn about what sequence of actions H
has performed. Whatever L observes is consistent with any sequence of actions by H of this length.2 More precisely, define 
K L(v) for an L view v to be the set of H action sequences ActH (r) for r a run with v = viewL(r); this represents what L
knows about H ’s actions in the run. Then M ∈ NDI iff for all possible L views v we have K L(v) = A|v|

H .
The definition of NDI takes the viewpoint that a system is secure if it is not possible for L to make any nontrivial deduc-

tions about H behaviour, provided that H does not actively seek to communicate information to L. This is an appropriate 
definition when H is trusted not to deliberately act so as to communicate information to L, and the context is one where 
H is equally likely to engage in any of its possible behaviours. In some circumstances, however, NDI proves to be too weak 
a notion of security. In particular, this is the case if the attack model against which the system must be secure includes the 
possibility of Trojan Horses at the H end of the system, which must be prevented from communicating H secrets to L. The 
following example, due in essence to Wittbold and Johnson [46] shows that it is possible for a system to satisfy NDI, but 
still allow for L to deduce H information.

2 Recall that M is input-enabled.
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Fig. 1. A synchronous machine in NDI, but not in NDS, where x ∈ {0,1}.

Example 1. We present a synchronous machine that satisfies NDI in Fig. 1. We use the convention in such figures that 
the observations are shown on a state s in the form of obsH (s)/obsL(s). Edges are labelled with joint actions (a, a′) where 
a ∈ AH and a′ ∈ AL . When a is x this means that there is such an edge for all a ∈ AH . In this example the action sets are 
AH = {0, 1}, AL = {0}. Note that in state s1 and s2, L’s observation in the next state is determined as the exclusive-or of H ’s 
current observation and H ’s action. The system is in NDI since every H action sequence is compatible with every L view of 
the same length. For example, the L view 00000 is consistent with H action sequence 00 and 10 (path s0s1s3) and with H
action sequence 01 and 11 (path s0s2s3). Nevertheless, H can communicate a bit b of information to L, as follows. Note that 
H is able to distinguish between state s1 and s2 by means of the observation it makes on these states (at time 1). Suppose 
b = 1, then H chooses action 1 at s1 and action 0 at s2; in either case the next state is s4, and L observes 1. Alternately, if 
b = 0, then H chooses action 0 at s1 and action 1 at s2; in either case the next state is s3, and L observes 0. Whatever the 
value of b, H has guaranteed that L observes b at time 2, so this bit has been communicated. Intuitively, this means that 
the system fails to block Trojan Horses at H from communicating with L, even though it satisfies NDI. (The structure can 
be repeated so that H can communicate a message of any length to L in plain text.) ✷

2.5.2. Non-deducibility on strategies
The essence of Example 1 is that L is able to deduce H secrets based not just on its knowledge of the system, but also 

its knowledge that H is following a particular strategy for communication of information to L. In response to this example, 
Wittbold and Johnson proposed the following stronger definition of security that they called non-deducibility on strategies. 
To state this definition, we first formalize the possible communication strategies that can be used by H . Intuitively, H ’s 
behaviour may depend on what H has been able to observe in the system.

Definition 2.3 (H strategy, consistent runs). An H strategy in M is a function π : viewH (R(M)) → AH mapping each possible 
view of H (in M) to an H action. A run r = s0a1s1 . . .ansn of M is consistent with an H strategy π if for all i = 0 . . .n − 1, 
we have projH (ai+1) = π(viewH (s0a1s1 . . .ai si)). We write R(M, π) for the set of runs of M that are consistent with the 
H strategy π .

We can now state Wittbold and Johnson’s definition.

Definition 2.4. A synchronous system M satisfies Nondeducibility on Strategies (M ∈ NDS), if for all H strategies π1, π2 in M , 
we have viewL(R(M, π1)) = viewL(R(M, π2)).

Intuitively, this definition says that the system is secure if L is not able to distinguish between different H strategies by 
means of its views. In Example 1, given an H strategy π1 satisfying π1(0x0) = 0 and π1(0x1) = 1, and another H strategy 
π2 satisfying π2(0x0) = 1 and π2(0x1) = 0, we have the L view 00001 in viewL(R(M, π2) but not in viewL(R(M, π1)). 
Thus, the sets of L views differ for these two strategies, so the system is not in NDS.

An alternate formulation of the definition can be obtained by noting that for every possible L view v , there is an H
strategy π such that v ∈ viewL(R(M, π)), viz., if v = viewL(r), we take π to be a strategy that always performs the same 
action at each time i < |r| as H performs at time i in r. Thus, we can state the definition as follows:

Proposition 1. M ∈ NDS iff for all H strategies π in M, we have viewL(R(M, π)) = viewL(R(M)).

Proof. It is trivial that if viewL(R(M, π)) = viewL(R(M)) for all strategies π then M ∈ NDS. Conversely, suppose that 
M ∈ NDS, and let π be any strategy. Plainly viewL(R(M, π)) ⊆ viewL(R(M)); we show the reverse containment. Let 
v ∈ viewL(R(M)) be a possible L view. By the above observation there exists a strategy π1 such that v ∈ viewL(R(M, π1)). 
By M ∈ NDS, viewL(R(M, π1)) = viewL(R(M, π)), so also v ∈ viewL(R(M, π)), as required. ✷

This formulation makes it clear that H cannot communicate any information to L by means of its strategies. It is also 
apparent that allowing H strategies to be non-deterministic (i.e., functions from H views to a set of H actions) would not 
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lead to a different definition of NDS, since the more choices H has in a strategy the more L-views are compatible with 
that strategy. We remark that in asynchronous systems (in which we use an asynchronous notion of view), similarly defined 
notions of non-deducibility on inputs and non-deducibility on strategies turn out to be equivalent [18,42]. The Example 1
above shows that this is not the case in synchronous machines, where the two notions are distinct.

2.5.3. Unwinding relations
Nondeducibility-based definitions of security are quite intuitive, but they turn out to have some disadvantages as a basis 

for secure systems development. In particular, non-deducibility on inputs is not compositional: combining two systems, each 
secure, can produce a compound system that is not secure [34]. For this reason, some stronger, but less intuitive definitions 
have been advocated in the literature.

One of these, McCullough’s notion of restrictiveness [34], is closely related to an approach to formal proof of systems 
security based on what are known as “unwinding relations.” A variety of definitions of unwinding relations have been 
proposed in the literature [24,38,31,7], in the context of a number of different underlying systems models and associated 
definitions of security for which they are intended to provide a proof technique. We propose here a variant of such def-
initions that is appropriate to the machine model we consider in this paper, drawing on definitions proposed by van der 
Meyden and Zhang [44] for machines acting under the control of a scheduler.

Definition 2.5 (Synchronous unwinding relation). A synchronous unwinding relation on a system M is a symmetric relation 
∼⊆ S × S satisfying the following:

1. s0 ∼ s0,
2. s ∼ t implies obsL(s) = obsL(t), and

3. s ∼ t implies that for all a1, a2 ∈ AH and a3 ∈ AL , if s (a1,a3)−−−−→ s′ then there exists a state t′ such that t
(a2,a3)−−−−→ t′ , and 

s′ ∼ t′ .

Intuitively, an unwinding relation is a bisimulation-like relation over S that shows L observations are locally uncorrelated 
with H actions.

Definition 2.6. A synchronous machine M satisfies restrictiveness (M ∈ RES), if there exists a synchronous unwinding rela-
tion on M .

Part of the significance of RES is that it provides a proof technique for our notions of nondeducibility, as shown by the 
following result, which relates the three notions of security we have introduced:

Theorem 1. The following containments hold and are strict: RES⊂ NDS⊂ NDI.

Proof. To show that RES ⊆ NDS we argue as follows. Suppose that ∼ is a synchronous unwinding on M . Let v be any 
possible L view, and π any H strategy. We have to show that v ∈ viewL(R(M, π)). For this, let r = s0a1s1 . . .ansn be a run 
such that v = viewL(r). We show that there exists a run r′ = s′

0a′
1s′

1 . . .a′
ns′

n consistent with π such that v = viewL(r′). 
We proceed inductively, showing for each i = 0 . . .n that viewL(s0a1s1 . . .ai si) = viewL(s′

0a′
1s′

1 . . .a′
i s

′
i) and si ∼ s′

i , where 
s′

0a′
1s′

1 . . .a′
i s

′
i is a run consistent with π . In the base case, we have s′

0 = s0 and the claim is trivial. For the inductive case, 
let a = π(viewH (s′

0a′
1s′

1 . . .a′
i s

′
i)) and b = projL(ai+1), and take a′

i+1 = (a, b). Since projL(ai+1) = projL(a
′
i+1) and ∼ is an 

unwinding relation, there exists a state s′
i+1 such that s′

i

a′
i+1−−→ s′

i+1 and si+1 ∼ s′
i+1. Further, we conclude that obsL(si+1) =

obsL(s′
i+1). Since s′

0a′
1s′

1 . . .a′
i s

′
i is consistent with π , so is s′

0a′
1s′

1 . . .a′
i s

′
ia

′
i+1s′

i+1, and

viewL(s′
0a′

1s′
1 . . .a′

i s
′
ia

′
i+1s′

i+1) = viewL(s′
0a′

1s′
1 . . .a′

i s
′
i)projL(a

′
i+1)obsL(s′

i+1)

= viewL(s0a1s1 . . .ai si)projL(ai+1)obsL(si+1)

= viewL(s0a1s1 . . .ai siai+1si+1) ,

as required.
Next we show that NDS ⊆ NDI. Let α ∈ A∗

H and v be an L observation satisfying |α| = |v|. We construct a “blind” H
strategy π as π(v ′) = α|v ′|+1 if |v ′| < |α| and π(v ′) = aH otherwise, where aH is an arbitrary action in AH . Since M ∈ NDS, 
we have viewL(R(M, π)) = viewL(R(M)), so there exists a run r ∈ R(M, π) such that viewL(r) = v . By the construction 
of π we have ActH (r) = α.

That the inclusions are strict follows from Example 1 and Example 2 below. ✷

Example 2. We present a machine in Fig. 2 that satisfies NDS but does not satisfy RES. In this system we let AH = {0, 1}, 
AL = {0}. We use the conventions from Example 1. One may easily observe that the set of L views is given by the regular 
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Fig. 2. A synchronous machine M in NDS, but not in RES, where x ∈ {0,1}. Every state s is labelled with a pair obsH (s)/obsL(s).

Fig. 3. An SMT processor with shared functional unit FU.

language 000((00)∗ + (01)∗) and all the views are compatible with every possible H strategy. However, there does not exist 
a synchronous unwinding relation. Suppose there was such a relation ∼. Then s0 ∼ s0, and for joint actions (0, 0) and (1, 0), 
we have s0

(0,0)−−−→ s1, s0
(1,0)−−−→ s2 and s0

(1,0)−−−→ s3, and we would require s1 to be related to either s2 or s3. However, neither 
s2 nor s3 can be related to s1: from s2 user L can only observe (00)∗ in the future, and from s3 only (01)∗ can be observed 
by L. Note from s1 both (00)∗ and (01)∗ are possible for L. ✷

In the following sections, we study the complexity of the notions of security we have defined above.

2.6. Example

To illustrate the synchronous models and definitions we study in this paper in a more realistic setting, we sketch an 
example that shows how covert channels can arise from resource sharing in hardware designs. In particular, the following 
is illustrative of covert channels found in simultaneous multi-threaded processors [47]. Such a processor is able to fetch 
instructions and produce outputs simultaneously (i.e., within the same clock cycle) from two parallel processes or threads. 
Consider a device (depicted in Fig. 3) that reads instructions from two input sources, H and L. The instructions are of two 
types: easy (e.g. addition) and hard (e.g., multiplication) and we have the decomposition Au = Easyu ∪ Hardu for u ∈ {L, H}. 
For each security level u, there are two outputs: readyu and outu . Intuitively, outu is the result output to the user, and 
readyu is a flag that indicates that an output is available.

Internally, there is an independent processing unit PUu for each u ∈ {L, H} to process the easy instructions, but for 
processing the hard instructions, H and L share the use of a special functional unit FU. Two queues, qL, qH store inputs 
for the functional unit. We assume here for the sake of simplicity that the queues have maximal length 1, but similar 
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conclusions about security would hold for any finite queue length. The functional unit maintains a variable turn to capture 
the currently scheduled input source.

The processing units PUu operate as follows in each clock cycle. If qu is not empty, then there is a pending computation 
and input au is ignored. Otherwise, the input is read. If au ∈ Easyu then the results of operation au are computed by PUu , 
the result is stored in outu , and flag readyu is set to 1. If au ∈ Hardu then au is stored in the queue qu and readyu is set to 
0 to indicate that the output is not yet available.

The functional unit FU operates as follows. First, it selects one of the agents u, according to some scheduling policy: we 
discuss two variants of this below. If queue qu is empty then FU does nothing in the current round (except for operations 
necessary to maintain its scheduler state.) Otherwise, the operation au in queue qu is retrieved and the queue emptied, the 
operation is performed, and the result stored in outu , and flag readyu is set to 1. Finally, turn is updated, according to the 
scheduling policy. Note that both FU and PUu may write to u’s output variables, but there is no actual conflict.

The security of such a system depends on the scheduling policy used by FU. Suppose first that, in the interests of fairness 
and throughput, after FU has handled an agent’s instruction, it prioritizes the opposite agent in the event of contention. 
Initially the priority is set to H (i.e., turn = H at start-up). If qturn is nonempty, then its operation is selected for handling, 
and turn is flipped. Otherwise, any operation in the other queue is selected for handling, but turn is not changed (the same 
agent still has priority). Intuitively, this setting is not secure, and the system can be shown to be not in NDI. Suppose that 
L inputs a sequence a1a2 of actions where a1 is an instruction in HardL . Simultaneously, H inputs the sequence of actions 
b1b2. After a1, L will observe readyL = 0, since the first hard instruction is always placed in the queue qL . However, after a2, 
L will observe either readyL = 0 or readyL = 1, depending on the action b1. The observation readyL = 0 will occur in case 
b1 ∈ HardH : this operation is placed into qH in the first step and selected for processing by FU in the second step (delaying 
the processing of a1). Alternately, if b1 ∈ EasyH , then qH is empty after the first step, enabling FU to select the action a1
in qL for processing, giving Low observation readyL = 1 after the second step. Agent L can therefore deduce information 
about agent H ’s actions, meaning that the system does not satisfy NDI. It can be seen that repeated use of this flow of 
information gives a high throughput covert channel for messages to be passed from H to L. For more concrete and realistic 
examples (e.g., written in the C programming language or machine code), we refer to the literature [36,47].

Alternately, consider a simple alternating scheduler for FU, in which always selects an action, if there is one, from qH at 
even times, and always selections an action, if there is one, from qL at odd times, but does not select an action in the other 
queue should the preferred queue be empty. With this scheduler, there is, intuitively, no correlation between L observations 
and H actions, and the system is secure. Indeed, it can be shown to satisfy the strongest of our security definitions RES. 
We leave the details to the reader.

3. Synchronous nondeducibility on inputs

In this section we establish the following result:

Theorem 2. For the class of finite state synchronous machines, NDI is PSPACE-complete with respect to logspace reductions.

3.1. PSPACE-easiness

Stating the definition in the negative, a system is not in NDI if there exists an L view v and a sequence of H actions 
α with |α| = |v| such that there exists no run r with ActH (r) = α and viewL(r) = v . We show that NDI is decidable by a 
procedure that searches for such an L view v and H action sequence α. The key element of the proof is to show that we 
need to maintain only a limited amount of information during this search, so that we can bound the length of the witness 
(v, α), and the amount of space needed to show that such a witness exists.

To show this, suppose we are given a machine M = ⟨S, A, s0, →, O , obs⟩. Given a sequence α ∈ A∗
H and a sequence 

v ∈ O (AL O )∗ , we define the set K (α, v) to be the set of all final states of runs r of M consistent with α and v , i.e., such 
that ActH (r) = α and viewL(r) = v . For each a ∈ AH , b ∈ AL and o ∈ O , we also define the function δa,b,o : P(S) → P(S), 
by

δa,b,o(T ) = {t ∈ S | for some t′ ∈ T we have t′ (a,b)−−−→ t and obsL(t) = o} .

For the system M define the labelled transition system LTS(M) = (Q , %, q0, ⇒) as follows:

1. Q = S × P(S),
2. q0 = (s0, {s0}),
3. % = AH × AL × AH ,
4. ⇒⊆ Q × % × Q is the labelled transition relation defined by (s, T ) ⇒(a,b,a′) (s′, T ′) if a ∈ AH , b ∈ AL , a′ ∈ AH such that 

s (a,b)−−−→ s′ and T ′ = δa′,b,obsL (s′)(T ).

Intuitively, the component s in a state (s, T ) ∈ Q is used to ensure that we generate an L view v that is in fact possible. 
The components a, b in a transition (s, T ) ⇒(a,b,a′) (s′, T ′) represent the actions used to generate the run underlying v , and 
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the component a′ is used to generate a sequence α. The set T represents K (α, v). More precisely, we have the following 
result:

Lemma 1. If q0 ⇒(a1,b1,a′
1) (s1, T1) ⇒ · · · ⇒(an,bn,a′

n) (sn, Tn), then the sequence v = obsL(s0)b1obsL(s1) . . .bnobsL(sn) is a possible 
L view, and α = a′

1 . . .a′
n is a sequence of H actions such that |v| = |α| and K (α, v) = Tn.

Conversely, for every possible L view v with |v| = n, and sequence of H actions α = a′
1 . . .a′

n, there exists a path q0 ⇒(a1,b1,a′
1)

(s1, T1) ⇒ · · · ⇒(an,bn,a′
n) (sn, Tn) such that v = obsL(s0)b1obsL(s1) . . .bnobsL(sn) and K (α, v) = Tn.

Proof. We first show that for all α ∈ A∗
H , v ∈ O (AL O )∗ , a ∈ AH , b ∈ AL and o ∈ O , we have K (αa, vbo) = δa,b,o(K (α, v)). 

To show K (αa, vbo) ⊆ δa,b,o(K (α, v)), suppose that t ∈ K (αa, vbo). Then there exists a run r of M such that ActH (r) = αa

and viewL(r) = vbo and the final state of r is t . It follows that obsL(t) = o. Thus, we may write r = r′ (a,b)−−−→ t , where 
ActH (r′) = α, and viewL(r′) = v . Thus, the final state t′ of r′ is in K (α, v). Since t′ (a,b)−−−→ t and obsL(t) = o, it follows that 
t ∈ δa,b,o(K (α, v)).

Conversely, if t ∈ δa,b,o(K (α, v)) then by definition of δa,b,o there exists t′ ∈ K (α, v) such that t′ (a,b)−−−→ t and obsL(t) = o. 
By definition of K (α, v) there exists a run r of M such that ActH (r) = α and viewL(r) = v . Taking r′ = r

(a,b)−−−→ t , we see 
that r′ is a run of M with ActH (r) = αa and viewL(r′) = vbo. Thus, t ∈ K (αa, vbo), as required. This completes the proof 
that K (αa, vbo) = δa,b,o(K (α, v)).

We can now prove the two parts of the result:

• Suppose q0 ⇒(a1,b1,a′
1) (s1, T1) ⇒ · · · ⇒(an,bn,a′

n) (sn, Tn) is a run of LTS(M), then by definition r = s0
(a1,b1)−−−−→ s1

(a2,b2)−−−−→
. . .

(an,bn)−−−−→ sn is a run of M , such that viewL(r) = obsL(s0)b1obsL(s1) . . .bnobsL(sn) = v is a possible L view. Moreover, 
Ti+1 = δai ,bi ,obsL (si+1)(Ti) for i = 0 . . .n − 1, where we take T0 = {s0}. Since T0 = K (ε, obsL(s0)), it follows from the above 
using a straightforward induction that Tn = K (α, v), where α = a′

1 . . .a′
n .

• Let v be a possible L view, then there exists a run r = s0
(a1,b1)−−−−→ s1

(a2,b2)−−−−→ . . .
(an,bn)−−−−→ sn of M such that viewL(r) = v . 

Given a sequence of H actions α = a′
1 . . .a′

n , we inductively define T0 = {s0} and Ti+1 = δai ,bi ,obsL (si+1)(Ti). It is 
then immediate by definition that we have a path (s0, {s0}) ⇒(a1,b1,a′

1) (s1, T1) ⇒ · · · ⇒(an,bn,a′
n) (sn, Tn) in LTS(M). 

By a straightforward induction using what was proved above, we have that Tn = K (α, v), where α = a′
1 . . .a′

n and 
v = obsL(s0)b1obsL(s1) . . .bnobsL(sn). ✷

We now note that for an H action sequence α and a possible L view v , with |v| = |α|, there exists no run r such that 
ActH (r) = α and viewL(r) = v iff K (α, v) = ∅. The existence of such a pair (α, v), is therefore equivalent, by Lemma 1, 
to the existence of a path in LTS(M) from q0 to a state (s, T ) with T = ∅. This can be decided in NSPACE(O (|M|)) =
DSPACE(O (|M|2)) ⊆ PSPACE. This proves the following theorem.

Theorem 3. M ∈ NDI is decidable in PSPACE.

We note, moreover, that since there are at most |S| × 2|S| states in Q , if there exists a pair (α, v) witnessing that 
M ∉ NDI there exists such a pair with |α| ≤ |S| × 2|S| .

3.2. PSPACE-hardness

We show that NDI is PSPACE-hard already in the special case of scheduled machines. The proof is by a polynomial time 
reduction from the problem of deciding, given a non-deterministic finite state automaton A on alphabet %, if the language 
L(A) accepted by A is equal to %∗ . This Universality problem is PSPACE-hard [40].

Let A = ⟨Q , Q 0, %, δ, F ⟩ be a non-deterministic finite state automaton (without ε-transitions), with states Q , initial 
states Q 0 ⊆ Q , alphabet %, transition function δ : Q × % → P(Q ), and final states F . We construct a machine M(A), 
depicted in Fig. 4, that is in NDI iff L(A) = %∗ . Low actions in this machine correspond to letters a ∈ %, and H has two 
actions h, h′. Intuitively, the machine consists of two components. One simulates the automaton using L actions as input 
letters, but can only be entered if the first action of H is h. Acceptance of the input word is represented in this component 
by L making observation 1. The other generates all possible L views, and can be entered if the first action of H is h′ . If any 
word is not in L(A), then the L view that corresponds to this word can only be obtained when the first H input is h′ , so 
the system is not in NDI.

Formally, we define M(A) = ⟨S, A, s0, →, obs, O ⟩ to be a scheduled machine, and use a function sched : S → {H, L} to 
indicate the agent (if any) whose actions determine transitions. In view of this, when sched(s) = u and a ∈ Au , we may write 
s a−→ t to represent that s b−→ t for all joint actions b with proju(b) = a. The components of M(A) are defined as follows.

• S = Q ∪ {s0, s1, s2, s3}, where Q ∩ {s0, s1, s2, s3} =∅,
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Fig. 4. Construction for PSPACE hardness of NDI.

• sched(s0) = H and sched(s) = L for all s ∈ S \ {s0},
• A = AH ∪ AL where AL = % and AH = {h, h′},
• O  = {0, 1},
• obs : {H, L} × S → O with obsH (s) = 0 for all s ∈ S and obsL(s) = 0 for all s ∈ S \ {s2}, and obsL(s2) = 1.
• −→⊆ S × A × S is defined as consisting of the following transitions (using the convention noted above)

– s0
h−−→ q for all q ∈ Q 0,

– s0
h−−→ s2, provided Q 0 ∩ F ≠ ∅,

– s0
h′

−−→ s1 and s0
h′

−−→ s2,
– s1

a−−→ s1 and s1
a−−→ s2 for all a ∈ %,

– s2
a−−→ s2 for all a ∈ %,

– s3
a−−→ s3 for all a ∈ %,

– for q, q′ ∈ Q and a ∈ AL = % we have q a−−→ q′ for all q′ ∈ δ(q, a),
– for q ∈ Q and a ∈ AL = % such that δ(q, a) ∩ F ≠ ∅, we have q a−−→ s2,
– for q ∈ Q and a ∈ AL = % such that δ(q, a) =∅, we have q a−−→ s3.

The construction of M(A) from A can be done in logspace.
Intuitively, the runs of M(A) produce two sets of L views, depending on whether the first H action is h or h′ . In all 

circumstances, runs in which H does h′ in the first step, with the first transition to s1, produce an L view for each sequence 
in 0%1(%1)∗ or 0%0(%0)∗(%1)∗ by switching from to s2 at the first occurrence of observation 1. Runs in which H does h
in the first step with a transition to a state in Q 0, correspond to simulations of A and produce two types of L views:

1. any sequence in 0%0(%0)∗ (by means of a run that stays in Q for as long as possible, and moves to s3 whenever an 
action is not enabled), and

2. any sequence of the form 0%0b10 . . .bn−10bn1(%1)∗ with b1 . . .bn ∈ L(A) (these come from runs that pass through Q
and then jump to s2).

In case ε ∈ L(A), i.e., Q 0 ∩ F ≠ ∅, then also all sequences in 0%1(%1)∗ are produced as the L view on a run in which the 
first transition, with H action h, is to s2.

Note that since L is always scheduled after the first step, replacing any action by H after the first step in a run by any 
other action of H results in another run, with no change to the L view. Thus, the only thing that needs to be checked to 
determine whether M(A) ∈ NDI is whether the same can be said for the first step. Moreover, it can be seen from the above 
that, for all A, and independently of whether ε ∈ L(A), any L view obtained from a run in which the first H action is h
can also be obtained from a run in which the first H action is h′ . Thus, to show M(A) ∈ NDI, it suffices to check that any 
L view obtained from a run in which the first H action is h′ can also be obtained from a run in which the first action is h.

Proposition 2. L(A) = %∗ iff M(A) ∈ NDI.

Proof. For the ‘only if’ part, suppose L(A) = %∗ . We show that M(A) ∈ NDI. As argued above, it suffices to show that 
any view obtained from a run in which the first H action is h′ can also be obtained from a run in which the first action 
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is h. Let r = s0(h′, b1)t1 . . . (an, bn)tn be a run of M(A), with the ai ∈ AH and the bi ∈ AL . If t1 = s2 then since ε ∈ L(A), 
simply by replacing the first transition by s0

(h,b1)−−−→ s2 we obtain a run with first H action h that has exactly the same L
view. Otherwise t1 = s1. If all obsL(ti) = 0 then we may construct a run of M(A) with the same L view as r by taking any 
transition into Q in the first step, then remaining within Q throughout, or making a transition to s3 if there is no enabled 
transition of A on the given input bi . Otherwise, let i be the least index with obsL(ti) = 1. Since L(A) = %∗ , there exists a 
run q0

b2−→ q1 . . .
bi−→ qi−1 of A with qi−1 ∈ F . By construction of M(A), it then follows that

r′ = s0
(h,b1)−−−→ q0

(h,b1)−−−→ q1 . . .qi−2
(ai ,bi)−−−−→ s2 . . .

(an,bn)−−−−→ s2

is a run with the same L view as r but with first H action h. Thus, M(A) ∈ NDI.

For the ‘if’ part, suppose there is a word w = a1a2 . . .an ∉ L(A). If w = ε, then the transition s0
h−→ s2 is not present in 

M(A), so there is no run starting with H action h that produces the L view 0b1 (with b ∈ %) that we get from s0
(h′,b)−−−→ s1. 

Otherwise, for an arbitrary a0 ∈ %, the L view 0a00a10a2 . . .an1 cannot be obtained from runs in which the first H action 
is h, because otherwise w would be accepted by A. However this view is obtained from a run in which the first action 
is h′ . Therefore M(A) ̸∈ NDI. ✷

As pointed out at the beginning of this section, this lower bound result already holds for scheduled machines, and thus 
NDI is already PSPACE-hard for this subclass.

4. Nondeducibility on strategies

In this section we establish the following theorem:

Theorem 4. For the class of finite state synchronous machines, and with respect to log-space reductions, NDS is EXPSPACE-complete.

4.1. EXPSPACE-easiness

For the proof that NDS is decidable in EXPSPACE, we show that the problem is in DSPACE(2O (|M|)). It is convenient for 
this section to consider strategies π that are defined over the larger set VH = O (AH O )∗ of candidate views of H , rather 
than the subset viewH (R(M)) of possible views.

We use the characterization of NDS given in Proposition 1. Let π be an H strategy, and β be an L view. Say that π
excludes β if there does not exist a run r consistent with π such that β = viewL(r). Since always R(M, π) ⊆ R(M), by 
Proposition 1, a system M satisfies NDS if and only if it is not the case that there exists a possible L view β in M and a 
strategy π such that π excludes β .

Our decidability result and complexity bound is obtained by showing that if such a strategy exists, then there is one of 
a particular normal form, and it can be found using a space-bounded search. The normal form strategies have a uniform 
structure, in that the choice of next action on an H view depends only on the length of the view and the set of states 
that H considers possible after that view, given that L’s view β has not yet been excluded. We call this set of states H ’s 
knowledge set.

More precisely, the knowledge sets are defined as follows. Given a candidate H view α ∈ O (AH O )∗ and a (to be excluded) 
candidate L view β ∈ O (AL O )∗ with |α| ≤ |β|, define K (α, π , β) to be the set of all final states of runs r consistent with π
such that viewH (r) = α and viewL(r) is a prefix of β .

These knowledge sets can be obtained in an incremental way using the update operators δaH ,oH ,aL ,oL : P(S) → P(S)
defined for each aH ∈ AH , aL ∈ AL , and oH , oL ∈ O , to map T ∈ P(S) to

δaH ,oH ,aL ,oL (T ) = {s ∈ S | ∃t ∈ T with t
(aH ,aL)−−−−→ s and obsH (s) = oH and obsL(s) = oL}.

The incremental characterisation is given in the following lemma.

Lemma 2. Suppose that π(α) = aH and |α| = |β|. Then δaH ,oH ,aL ,oL (K (α, π , β)) = K (αaH oH , π , βaLoL).

Proof. We first show that

δaH ,oH ,aL ,oL (K (α,π ,β)) ⊆ K (αaH oH ,π ,βaLoL).

Suppose t ∈ δaH ,oH ,aL ,oL (K (α, π , β)). We show that t ∈ K (αaH oH , π , βaLoL). We have that there exists s ∈ K (α, π , β) such 
that s (aH ,aL )−−−−→ t and obsH (t) = oH and obsL(t) = oL . Thus there exists a run r, consistent with π , and with final state s, such 
that viewH (r) = α and viewL(r) = β . Since π(α) = aH , we obtain that the run r (aH , aL) t is consistent with π and justifies 
t ∈ K (αaH oH , π , βaLoL).
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Conversely, suppose t ∈ K (αaH oH , π , βaLoL). Then there exists a run r′ consistent with π , which can be written in the 
form r (aH , aL) t with viewH (r) = α, and obsH (t) = oH , and viewL(r) = β and obsL(t) = oL . Let s be the final state of r. 
Then we have s ∈ K (α, π , β). It is now immediate that t ∈ δaH ,oH ,aL ,oL (K (α, π , β)). ✷

The following result shows that it suffices to consider strategies in which the choice of action depends only on the time 
and H ’s knowledge set, given the L view being excluded.

Lemma 3. If there exists an H strategy π that excludes β , then there exists an H strategy π ′ that also excludes β , and has the property 
that for all H views α and α′ , if K (α, π ′, β) = K (α′, π ′, β) and |α| = |α′| then π ′(α) = π ′(α′).

Proof. Suppose that π excludes β . For purposes of the proof, note that we can assume without loss of generality that β is 
infinite — this helps to avoid mention of views longer than β as a separate case. (Note that it is equivalent to say that π
excludes some prefix of β .)

Let f be any mapping from VH to VH such that for all α, α′ ∈ VH we have

1. | f (α)| = |α|,
2. K (α, π , β) = K ( f (α), π , β),
3. if |α| = |α′| and K (α, π , β) = K (α′, π , β), then f (α) = f (α′).

Such a mapping always exists; intuitively, it merely picks, at each length, a representative f (α) ∈ [α]∼ of the equivalence 
classes of the equivalence relation defined by α ∼ α′ if |α| = |α′| and K (α, π , β) = K (α′, π , β).

Now define the mapping g on VH as follows. Let α0 = obsH (s0) be the only possible H view of length 0. For α ∈ VH
of length 0, we define g(α) = α. For longer α, we define g(αao) = f (g(α))π( f (g(α))o. Also, define the strategy π ′ by 
π ′(α) = π( f (g(α))).

We claim that for all α ∈ VH we have K (α, π ′, β) = K (g(α), π , β). The proof is by induction on the length of α. The base 
case is straightforward, since α0 is consistent with all strategies, so K (α0, π ′, β) = {s0} = K (α0, π , β), and K (α, π ′, β) =∅ =
K (α, π , β) for α ≠ α0 with |α| = 0. Suppose the claim holds for α ∈ VH of length i. Let αao ∈ VH . By induction and (2), 
K (α, π ′, β) = K (g(α), π , β) = K ( f (g(α)), π , β). Let β ′aLoL be the prefix of β of length |α| + 1. Since action a = π ′(α) =
π( f (g(α)), using Lemma 2, we have that

K (αao,π ′,β) = K (αao,π ′,β ′aLoL)

= δa,o,aL ,oL (K (α,π ′,β ′))

= δa,o,aL ,oL (K ( f (g(α)),π ,β ′))

= K ( f (g(α))ao,π ,β ′aLoL)

= K ( f (g(α))ao,π ,β)

= K (g(αao),π ,β).

To see that π ′ has the required property, if K (α, π ′, β) = K (α′, π ′, β) with |α| = |α′|, then we have K (g(α), π , β) =
K (g(α′), π , β). By (3) we have f (g(α)) = f (g(α′)). Therefore π ′(α) = π( f (g(α))) = π( f (g(α′))) = π ′(α′), by definition.

Since π excludes β , there exists a length n such that for all α ∈ VH with |α| = n, we have K (α, π , β) =∅. Thus, we also 
have for all α of length n that K (α, π ′, β) = K (g(α), π , β) = ∅. This means that π ′ also excludes β . ✷

Based on Lemma 3, we construct a transition system T (M) = (Q , q0 ⇒) that simultaneously searches for the strategy π
and an L view β that is excluded by π . The components are defined by:

1. Q = P(S) × P(P(S)),
2. q0 = ({s0}, {{s0}}),
3. the transition relation ⇒ is defined by (U , K) ⇒(ρ,aL ,oL ) (U ′, K′) if

(a) ρ : K → AH , and aL ∈ AL and oL ∈ O ,

(b) U ′ = {t | there exists s ∈ U , and a transition s 
(a′

H ,aL )−−−−→ t, with a′
H ∈ AH and oL = obsL(t) } ̸=∅, and

(c) K′ = {δaH ,oH ,aL ,oL (k) | k ∈ K and aH = ρ(k) and oH ∈ O }.

Intuitively, the component U in a state (U , K) is used to ensure that the view β that we construct is in fact possible 
in M . The component K represents a collection of all possible knowledge sets that H can be in at a certain point of time, 
while attempting to exclude β . More specifically, each set k in K corresponds to α ∈ VH such that k = K (α, π , β). In a 
transition, we both determine the next phase of π , by extending π so that π(α) = ρ(K (α, π , β)), and extend β to βaLoL . 
Moreover, an H strategy generated by T (M) is only sensitive to H ’s knowledge set and lengths of runs, i.e., it satisfies that 
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K (α, π ′, β) = K (α′, π ′, β) and |α| = |α′| implies π ′(α) = π ′(α′). In the above construct, ρ represents the local choice of H
that depends only on the knowledge set of H .

The following result justifies the correspondence between the transition system T (M) and NDS.

Lemma 4. A machine M does not satisfy NDS iff T (M) contains a path q0 ⇒∗ (U , K) to a state where K =∅.

Proof. We first prove the implication from left to right. Suppose first that M does not satisfy NDS, witnessed by the fact 
that π excludes the possible L view β = o0b1o1b2, . . .bnon . We may assume without loss of generality that no strict prefix 
of β is excluded. By Lemma 3, we may assume that π has the property that it takes the same value on H views α, α′ that 
have the same length and have K (α, π , β) = K (α′, π , β). We construct a path

q0 = (U0,K0) ⇒(ρ1,b1,o1) (U1,K1) ⇒(ρ2,b2,o2) . . . ⇒(ρn,bn,on) (Un,Kn)

in the transition system T (M), by defining the functions ρi : Ki−1 → AH for i ≥ 1, and then deriving Ui from Ui−1 using the 
equation in clause 3(b) of the definition of T (M), and deriving Ki from Ki−1 and ρi using the equation in clause 3(c). (This 
guarantees that each step satisfies all the conditions of the definition of ⇒, except the requirement in 3(b) that U ′ ≠ ∅; 
we check this below.) The construction will have the property that every k ∈ Ki−1 is equal to some K (α, π , β) with α ∈ VH
of length i − 1. This means that we may define ρi(k) = π(α). Note that ρi is well-defined, by the assumption on π . More 
precisely, we claim that for each i = 0 . . .n, Ki is a subset of the set {K (α, π , o0b1o1 . . .bioi) | |α| = i}. Note that this means 
that if k ∈ Kn then k = ∅, for else we have an H view α of length |β| such that K (α, π , β) ̸= ∅, which implies that π does 
not exclude β . Thus Kn = ∅, as required for the right hand side of the result.

The proof of the claim is by induction on i. The base case of n = 0 is immediate from that fact that β is a possible 
view, so K (obsH (s0), π , o0) = {s0}. Suppose k′ ∈ Ki+1. We show k′ = K (α′, π , o0b1o1 . . .bioibi+1oi+1) for some α′ of length 
i + 1. By definition of Ki+1, there exists k ∈ Ki , and oH ∈ O , such that with aH = ρ(k), we have k′ = δbi+1,oi+1,aH ,oH (k). 
By induction, there exists α ∈ VH of length i such that k = K (α, π , o0b1o1 . . .bioi). By Lemma 2, it follows that k′ =
K (αaH oH , π , o0b1o1 . . .bioibi+1oi+1), as required.

It remains to show that Ui ≠ ∅ for each i = 1 . . .n. For this, note that since β is a possible L view, there exists a run 
s0

(a1,b1)−−−−→ s1
(a2,b2)−−−−→ . . .

(an,bn)−−−−→ sn such that obsL(si) = oi for i = 1 . . .n. A straightforward induction shows that for each i, 
we have si ∈ Ui , so in fact Ui ≠ ∅, as required.

For the other direction, suppose that

q0 = (U0,K0) ⇒(ρ1,b1,o1) (U1,K1) ⇒(ρ2,b2,o2) . . . ⇒(ρn,bn,on) (Un,Kn)

and Kn = {∅}. We construct a strategy π that excludes β = obsL(s0)b1o1 . . .bnon . A straightforward induction using clause 
3(b) of the definition of T (M) shows that β is a possible L view in M . The construction of π is done inductively, by defining 
a sequence of strategies π0, π1, . . . , πn such that if i ≤ j then πi and π j agree on all H views of length at most i − 1. At 
each stage of the construction, we claim that for all H views α of length i ≥ 0, if K (α, πi, β) ̸= ∅ then K (α, πi, β) ∈ Ki . 
Inductively, we let π0 be any strategy and define πi+1(α) = ρi+1(K (α, πi, β)) if |α| = i and K (α, πi, β) ̸=∅, and πi+1(α) =
πi(α) otherwise. Evidently, πi+1 is well defined by the claim that K (α, πi, β) ̸= ∅ then K (α, πi, β) ∈ Ki . Also this definition 
plainly satisfies the condition that if i ≤ j then πi and π j agree on all views of length at most i − 1. Note also that 
since Kn = {∅}, by the claim there does not exist an H view α of length n such that K (α, πn, β) ̸= ∅. It follows that πn
excludes β .

It therefore suffices to show that the definition satisfies the claim. Note that it holds trivially for any strategy if i = 0. 
Suppose that for all H views α of length i, if K (α, πi, β) ̸= ∅ then K (α, πi, β) ∈ Ki . Let αaH oH be an H view of length 
i +1 ≤ n −1 with K (αaH oH , πi+1, β) ̸=∅. Then also K (α, πi+1, β) ̸= ∅ and πi+1(α) = aH . Since πi and πi+1 agree on views 
of length at most i − 1, we also have K (α, πi+1, β) = K (α, πi, β) ̸= ∅, so K (α, πi+1, β) ∈ Ki . By Lemma 2, we have that 
K (αaH oH , πi+1, β) = δbi+1,oi+1,aH ,oH (K (α, πi+1, β)) ∈ Ki+1, as required. ✷

We obtain the claimed complexity bound from Lemma 4, simply by noting that it reduces NDS to a reachability problem 
in the transition system T (M). Since the states of the system T (M) can be represented in space O (|S| · 2|S|) = 2O (|S|) , we 
obtain from Savitch’s theorem that we can do the search in DSPACE(2O (|S|)).

4.2. EXPSPACE-hardness

To show that NDS is EXPSPACE-hard, we show how to encode the game BLIND–PEEK–PEEK of Reif [37]. We need only 
scheduled machines for the encoding, so the problem is EXPSPACE-hard already for this subclass.

4.2.1. The game BLIND–PEEK
BLIND–PEEK is a variant of the two-player game PEEK introduced by Stockmeyer and Chandra [39]. A PEEK game consists 

of a box with two open sides that contains horizontally stacked plates; the players sit at opposite sides of the box. Each 
plate has two positions, ‘in’ and ‘out’, and contains a knob at one side of the box, so that this plate can be controlled 
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by one of the players. At each step, one of the two players may grasp a knob from his side and push it ‘in’ or ‘out’. The 
player may also pass. Both the top of the box and the plates have holes in various positions, and each hole is associated 
to a player. If, just after a move of player a ∈ {1, 2}, the plates are positioned so that for one of the player’s holes in the 
top of the box, it is possible to peek through from the top of the box to the bottom (i.e., each plate has a hole positioned 
directly underneath the top hole), then player a wins. In PEEK, both players can observe the position of all plates at all 
times. BLIND–PEEK [37] (more formally, the game G2B of that paper) is a modification of PEEK in which player 1’s side of 
the box is partially covered, so that it is not possible for player 1 to see the positions of the plates controlled by player 2. 
We may represent the game formally as follows:

Definition 4.1. An instance G of the BLIND–PEEK game is given by a tuple (n, n1, )1, )2, ν0) where n and n1 are natural 
numbers with n1 < n,

)1 =
h1∨

j=1

γ 1
j and )2 =

h2∨

j=1

γ 2
j

are disjunctive normal form formulas over the set of atomic propositions {P1, . . . , Pn}, and ν0 : [1..n] → {0, 1} represents a 
boolean assignment to these propositions. The size of the instance is O (n(h1 + h2)).

Here hi , for i ∈ {1, 2}, is the number of holes on the top of the box for each player. Intuitively, n gives the number of 
plates, and the propositions Pk for 1 ≤ k ≤ n correspond to the positions of the plates, which can be either in (Pk false) or 
out (Pk true), and a state of the game G is given by a mapping ν : [1..n] → {0, 1}, with Pk true at ν just when ν(k) = 1. 
The total number of states in a game is thus exponential in the size of the game. The assignment ν0 specifies the initial 
state of the game. The number n1 specifies the number of plates associated to player 1; we take these to be plates 1..n1. 
The formula )i gives the winning condition for player i. Each disjunct γ i

j corresponds to one of the holes on the top of the 
box that is associated to player i. Which literals are in γ i

j depends on how the hole in the top of the box aligns with a hole 
on the plates when these are in or out. If there is always an alignment with a hole on plate k then γ i

j contains neither Pk

nor ¬Pk . If there is an alignment only when the k-th plate is out then γ i
j contains the literal Pk , and conversely, if there is 

an alignment only when the k-th plate is in then γ i
j contains the literal ¬Pk . (If there is never an alignment then we may 

include both Pk and ¬Pk , but, obviously, we may just as well remove the hole from the game.)
Players 1 and 2 play in turn by moving one of their plates or passing. As the players’ plate numbers partition the set 

[1 . . .n], we can denote the moves of the players movei with 1 ≤ i ≤ n; if i ∈ [1..n1] it is a move of player 1, and a move of 
player 2 otherwise. We let Move1 = {movei | 1 ≤ i ≤ n1} ∪ {Pass} and Move2 = {movei | n1 + 1 ≤ i ≤ n} ∪ {Pass}.

A play ϱ in G is an alternating sequence of player 1 and player 2 moves of the form

ϱ = ν0
λ1−−→ ν1

λ2−−→ ν2 · · · νi−1
λi−−→ νi

where λ j is a player 1 move in Move1 when j is odd and a player 2 move in Move2 when j is even. Moreover, if λl = Pass
then νl = νl−1 and if λl = movek , then νl(k) = 1 − νl−1(k) and νl( j) = νl−1( j) for j ̸= k.

A state ν is winning for player p if it satisfies the formula )p . A play ϱ is winning for player p if it contains a state νk
immediately after a move by player p that is winning for that player, and there is no earlier such winning state for the 
other player. Otherwise the play is undecided.

We are interested in the problem of deciding whether there is a winning strategy for player 1, i.e., a way for the player 
to choose their moves that guarantees, whatever the other player does, that player 1 will win. Strategies usually choose a 
next move based on what the player has been able to observe over a play of the game. In the case of the game G , the 
information directly visible to player 1 in a state is just the position of plates 1..n1 . Player 2 sees the position of all plates. 
A player also remembers the sequence of moves they have played at their turn. At each step of the play, the player is also 
advised whether any player has won the game. (In a physical realization of the game, if a player were to peek through 
a hole they would be able to see which is the topmost plate that blocks it. We assume that the player does not get this 
information in the formal game. One can imagine a physical realization in which a referee peeks through the holes and 
announces the result.)

Since the winning condition is a discrete, state-based condition, deterministic strategies suffice. Moreover, note that, 
except for the information about who has won the game, the effect of the players’ moves on the information directly visible 
to player 1 is deterministic: we can deduce the position of player 1’s plates from the moves that player 1 has made so far 
in the game. Thus, every undecided play in which player 1 has made a particular sequence of moves yields the same view 
for player 1, and on a deterministic strategy, player 1 must make the same next move on all such plays. This means that 
we may represent a player 1 strategy simply by a (finite or infinite) sequence of moves . = λ1, λ3, λ5 . . . . Such a strategy is 
winning for player 1 if every play with this sequence of moves by player 1 is winning for player 1.

The following result characterizes the complexity of BLIND–PEEK.

Theorem 5. (See [37].) The game BLIND–PEEK is complete for EXPSPACE under log-space reductions.
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We use this result to show that NDS is EXPSPACE-hard. Given an instance G of BLIND–PEEK, we construct a synchronous 
system M(G) of size polynomial in the size of G , with the following property: player 1 has a winning strategy in G iff there 
exists an L view v L and an H strategy π that excludes v L in M(G).

Intuitively, the winning strategy . of player 1 in the game G will be encoded within the sequence of L actions contained 
in the view v L . The role of the H strategy π in the machine M(G) is to help in the verification that the strategy . is 
winning, by ensuring that the view v L cannot occur when this is the case. As we cannot encode the exponential number of 
possible states of the BLIND–PEEK game G directly in the polynomial number of states of M(G), we use an encoding trick, 
which is to represent the state of the game as the set of states of M(G) that are consistent with the H view. Roughly, each 
such consistent state corresponds to one of the plates; there are some additional states for initialization and book-keeping 
related to the winning condition.

4.2.2. High level structure of M(G)
We let n2 = n − n1 be the number of plates that can be moved by player 2.
The machine M(G) will be a scheduled machine (see Section 2.4), with deterministic schedule following the regular 

expression ⊥(LHL⊥Hh2 )ω . Here occurrences of H and L indicate which agent’s action the transition is allowed to depend 
upon, and ⊥ is for a system step that is independent of both agents H and L. We call each instance of the infinitely repeated 
block LHL⊥Hh2 a round, and use indices, as in L1 H0L2⊥H1..Hh2 to refer to the stages of the round.

The alphabet of actions for L and H are AL and AH defined by:

A−
L = {movei | i ∈ [1 . . .n1]}

AL = A−
L ∪ {checkwin}

AH = {isOpenk | k ∈ [1..h1]} ∪ {isBlockingk | k ∈ [1 · · ·n]}.
Informally, the behaviour of M(G) in each step is as follows:

1. In the first ⊥ step of the schedule, the machine nondeterministically makes a transition to one of n subsystems, each 
of which monitors one particular plate of the game. Neither H nor L is able to see which subsystem they are actually 
in during subsequent transitions. The machine then moves into the cyclically repeated rounds.

2. The L1 stage of each round allows L to perform one move of player 1 in the game G (using an action movei ) or to pass 
(using the action checkwin). This stage corresponds to a move according to a blindfold strategy of player 1.

3. In the following H0 stage, agent H is given an opportunity to assert that the last L move has achieved a win of player 1, 
by specifying a hole j of player 1 and claiming that it is possible to peek through (using an action isOpen j). H may 
also pass (using any other action).

4. The following L2 stage allows L to check, by performing a “checkwin” action, if a winning state has been reached, 
as claimed by H sometime before. If it is so, then some of the L views will be ruled out. If it is still not a win, or H
has not yet asserted a win, or H has made a mistake, this “checkwin” action will not rule out any L view. (Once a 
“checkwin” fails in this way, no L views will be excluded thereafter.)

5. The next stage ⊥ simulates a move of player 2 in the game G .
6. During the last h2 stages, agent H is given an opportunity to assert that the last player 2 move is not a win, and 

explain this claim by pointing, for each of the h2 peek-holes of player 2, to a plate j that blocks that hole, using an 
action isBlocking j .

The observations of the agents L, H in M(G) are defined so that neither agent ever learns which plate is being simulated on 
the current run. Agent L observes the player 1 moves and a result of any “checkwin” actions. Agent H observes all moves 
by either player.

Intuitively, suppose player 1 has a winning strategy and agent L faithfully follows this strategy in the L1 stage of each 
round. Suppose also that agent H , who knows every previous move of the play, always makes correct assertions about 
whether holes are open or blocked. Then L is guaranteed to be able to eventually make a successful “checkwin” and get 
some L views ruled out. To handle the case where H makes incorrect assertions, the construction ensures that no L view is 
eliminated if this happens. Thus, the statement that there is some H strategy that eliminates an L view corresponds to the 
statement that H has a way of making correct assertions in order to show that the player 1 strategy is winning.

4.2.3. States and observations of M(G)
Formally, the state space of M(G) is defined as

{s0} ∪ (C × P × B × M) ∪ (C × F),

where s0 is the initial state, and the components are as follows:

• C = {L1, H0, L2, ⊥, H1, · · · , Hh2 } encodes a clock that represents the current stage in a round of the cyclic part of the 
schedule,
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Fig. 5. High level structure of M(G).

• P = {1, . . .n} represents the plate being monitored,
• B = {0, 1} encodes whether the current plate is “in” or “out”,
• M = Move1 ∪Move2 ∪ {⊥} records the most recent move in the play (and ⊥ for simulation steps that do not correspond 

to game steps), and
• F = {(win, ⊥), (error, ⊥), (win, 1), (error, 1), (error, 2)} records the result of claims made by H .

The observation mappings for H and L on these states are given by:

• obsL((c, r, 1)) = 1 and obsL((c, r, 2)) = 2, where c ∈ C and r ∈ {win, error}, and obsL(s) = ⊥ for all s not of this form.
• obs(s0) = ⊥, and obsH ((c, i, k, a)) = a and obsH (s) = end for all s ∈ C × F.

States of M(G) of type (c, i, k, a) ∈ C × P × B × M encode information about the effect of the play of the game so far on 
a particular plate: c ∈ C indicates the current stage of the simulation, i ∈ [1..n] is a monitored plate, k ∈ B is the position of 
the plate i and a ∈ M is the most recent move made in the game, or ⊥ if none.

States of M(G) in C × F are used to capture the effect of assertions made by H relating to the winning conditions, and 
play a key role in ensuring that an L view is eliminated under the appropriate conditions. These states form a “terminal” 
part of the machine: it is not possible to return to the component C × P × B × M from these states. The C component 
simply tracks the simulation stages. Fig. 5 sketches the way that the F components of these states are used to check 
winning conditions for the game and to generate observations.

Intuitively, at various stages of the simulation (viz., H0 and H1 . . . Hh2 ), agent H is allowed to make assertions about the 
state of the game. When H makes such an assertions, M(G) checks whether they are true at the plate being simulated.

• If the assertion entails that there is not yet a win for player 2, and is true of the present plate, or does not concern 
the present plate, then we continue the simulation. (Specifically, this case occurs when the assertion is that a particular 
plate is blocking the hole for player 2 under consideration, and this is true or concerns another plate.)

• If the assertion entails a win for player 1 and is true of the present plate, then a transition is made to a state (win, ⊥). 
(Specifically, the assertion is that a particular player 1 hole is open, and this holds at the present plate.)

• The remaining possibility is that the assertion is false. In this case we make a transition to a state (error, ⊥). (We have 
this case when either the assertion is that a particular player 1 hole is open, but this is false at the present plate, or is 
that the present plate is blocking a particular player 2 hole, but this is false.)

When L eventually performs a checkwin action in the appropriate phase L2, states with (error, ⊥) could produce either 
the observation 1 or 2. By contrast, states with (win, ⊥) produce only the observation 1. Thus, the win states result in 
a reduced set of views. Note that we can only check assertions locally at the current plate, and the winning condition 
for player 1 requires that a player 1 hole be unblocked at all plates. The way that the encoding handles this is via L’s 
uncertainty about which plate is being monitored: if there is any plate at which the hole is blocked, then there will be a 
run consistent with L’s observations, monitoring this plate, at which we have (error, ⊥). When L performs checkwin in 
this run it will obtain both observations 1 and 2, and the set of views is not reduced.
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4.2.4. Transitions of M(G)
In general, transitions in a machine are labelled by joint actions (aH , aL) of H and L, but since M(G) is a scheduled 

machine, at most one of these has any effect on the state. To simplify the presentation, we use the convention of writing 
s b−→ t with b ∈ Au , to indicate that the current transition is dependent only on u, and write s τ−→ t if the transition is 
independent of both H and L (i.e., a system step). To capture the scheduler, we define the function next : C → C so that it 
maps each element of the sequence L1, H0, L1, ⊥, H1 . . . Hh2 to the element next in the sequence, with next(Hh2 ) = L1.

To describe the transitions we use the following predicates relating to the winning conditions. When i ∈ {1, 2} is a player, 
j = 1..hi is a hole associated to that player, k ∈ P is a plate and b ∈ B is a plate position, we define Openi

j(k, b), to be true 
just when either proposition Pk does not occur positively or negatively in γ i

j , or Pk occurs positively in γ i
j and b = 1 or 

¬Pk occurs in γ i
j and b = 0. Intuitively, this says that when plate k is in position b, it is not blocking hole j.

We group the transitions according to the step of the schedule. We first describe transitions from states in {s0} ∪ (C ×
P × B × M).

Initial Step ⊥ The initial state of M(G) is s0. From this state, we non-deterministically choose one plate to be monitored. 
This transition does not depend on any agents and has the form

s0
τ−−→ (L1, i,ν0(i),⊥)

for i ∈ [1 . . .n], where ν0 is the initial state of G .

Stage L1 At this stage, we simulate player 1’s move of a plate j. The special action checkwin is used for the pass move. 
For each move j ∈ AL , and state (L1, i, k, a) there is a transition of the form:

(L1, i,k,a)
move j−−−−−→ (H0, i,k′,move j)

with k′ = 1 − k if j = i and k′ = k otherwise. We also add

(L1, i,k,a)
checkwin−−−−−−−→ (H0, i,k,Pass)

for the pass move.

Stage H0 At this stage H may try to prove that player 1 can peek through some hole j ∈ [1..h1]. To do this, it chooses an 
action isOpen j . As it is a guess, H might be wrong. If H claims that player 1 can peek through hole j and this is right at 
the present plate, we reach a “winning” state in C × F, otherwise an error state. From a plate simulation state (H0, i, k, a)

there is a transition

(H0, i,k,a)
isOpen j−−−−−−→ (L2, r,⊥)

where r = win if Open1
j (i, k), and r = error otherwise. H may also intentionally choose not to declare a win, by performing 

any of its actions isBlocking j for j ∈ {1 . . .n}. This is captured by the transitions

(H0, i,k,a)
isBlocking j−−−−−−−−−→ (L2, i,k,⊥)

for j ∈ {1 . . .n}.

Stage L2 At this stage, L can perform the action “checkwin” to check if H has proved a win by player 1. If the current 
state at this stage is a plate simulation state, then H has not yet claimed a win for player 1, and any past assertions made 
by H about player 2’s winning condition were either true or irrelevant to the current plate. In this case, we do not have 
evidence for a player 1 win, so we do not wish to eliminate an L view. Thus, from states s = (L2, i, k, a), we have transitions

s
checkwin−−−−−−−→ (⊥, error,1) and s

checkwin−−−−−−−→ (⊥, error,2)

so that both observations 1 and 2 can be obtained. Agent L is also allowed to continue playing without checking for a win, 
by performing any of the actions move j with j ∈ [1 . . .n1]. For this case we have a transition

(L2, i,k,a)
move j−−−−−→ (⊥, i,k,⊥) .

(We discuss the case of transitions at this stage from states in C × F below.)
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Stage ⊥ At this stage, we simulate a move of a plate by player 2. The following transitions are in M(G):

(⊥, i,k,a)
τ−−→ (H1, i,k′,move j)

for each i ∈ P, k ∈ B and j ∈ [(n1 + 1) . . .n] (player 2’s plates), and: k′ = 1 − k if i = j and k′ = k otherwise. To model a pass 
move by player 2 we also have a transition

(⊥, i,k,a)
τ−−→ (H1, i,k,Pass) .

Stages H1 to Hh2 In these stages, H tries to prove that last move by player 2 was not a winning move for player 2. It does 
so by showing that all player 2 holes are blocked (by at least one plate). For each player 2 peek hole j, at stage H j , agent H
chooses a plate i ∈ [1 . . .n] and asserts that the hole is blocked by that plate using the action isBlockingi . An incorrect 
assertion results in a transition to an error state (c, error, ⊥). In particular, if the current state is indeed a win of player 2, 
then some hole j is open at all plates, and any attempt H makes to assert that it closed at a plate causes a transition to an 
error state.

This is encoded by the following transitions. At state (H j, i′, k, a) with j ∈ [1..h2], we have

(H j, i′,k,a)
isBlockingi−−−−−−−−−→ (next(H j), i′,k,⊥)

when either i ̸= i′ (plate i is not monitored in the current state), or i = i′ and not Open2
j (i, k) (the present plate is blocking 

player 2’s hole j). On the other hand, if i = i′ and Open2
j (i, k), i.e., player 2’s peek hole j is not blocked by plate i, we have 

the transition

(H j, i′,k,a)
isBlockingi−−−−−−−−−→ (next(H j), error,⊥) .

As pointed out before, the construction is designed to ensure that H knows the exact state of the game and thus can 
always determine whether a peek hole is blocked or not. Since we are looking for a winning strategy for player 1, if there 
is a win by player 2 then the present L strategy has failed. We would therefore like to insist that H must play only 
isBlockingi actions at this stage of the process. To ensure this, we define transitions so that all H actions other than 
isBlockingi cause an error transition at these stages. That is, for all H actions isOpen j and states of the form (c, i, k, a)

with c ∈ {H1, . . . , Hh2}, we have a transition

(c, i,k,a)
isOpen j−−−−−→ (next(c), error,⊥) .

This completes the description of transitions from states in C × P × B × M.

Transitions from C × F The behaviour of the machine on states in C × F was described informally above. The main effect 
of actions is from checkwin actions performed at stage L2. From states with observation ⊥, the action checkwin causes 
an L observation of 1 or 2. For the win states we have a transition

(L2,win,⊥)
checkwin−−−−−−→ (⊥,win,1)

and for the error states we have transitions

(L2, error,⊥)
checkwin−−−−−−→ (⊥, error,1) and (L2, error,⊥)

checkwin−−−−−−→ (⊥, error,2) .

For all other cases, i.e., for c = L2 and an action b = move j , or for c ∈ C \ {L2} and an action b (appropriate to stage c), we 
have for all r ∈ {win, error} a transition

(c, r,⊥)
b−→ (next(c), r,⊥) .

States at which an observation of 1 or 2 has already been obtained by L act as sinks, except for scheduler moves, i.e., we 
have a transition

(c, r, x)
b−→ (next(c), r, x)

for all c ∈ C, r ∈ {win, error} and x ∈ {1, 2}.
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4.2.5. Correctness of the construction
We now give the argument for the correctness of the encoding.
We first characterize the views obtained by the agents in M(G). In the case of agent L, the structure of the possible 

views follows straightforwardly from the fact that the transitions as defined above follow the structure indicated in Fig. 5. 
Until a checkwin action is performed by L at some stage L2 state, L observes ⊥. Once it performs that action at this stage, 
it will observe either 1 or 2 for the remainder of time. Thus, L views are prefixes of the sequences generated by the regular 
expressions

⊥ AL ⊥ (AL ⊥ AL ⊥ A−
L ⊥AL⊥(AL ⊥)h2)∗ AL ⊥ AL ⊥checkwin x (AL x)∗

with x = 1 or x = 2. Here the expression AL ⊥ AL ⊥ A−
L ⊥AL⊥(AL ⊥)h2 corresponds to a round in which L does not perform 

checkwin at stage L2. If α is an L view, we write .(α) for the subsequence of player 1 actions performed at times when 
the simulation is at stage L1, where we treat a checkwin at such a time as the action Pass.

The H views are prefixes of the sequences in the regular expression

⊥(AH (Move1 ∪ Move2 ∪ {⊥}))∗(AH end)∗

where the observations obtained at stage H0 are in Move1 ∪ {⊥}, the observations obtained at stage H1 are in Move2 ∪ {⊥}, 
and all other observations before the first end are ⊥.

We will show that there is a correspondence between plays of the game G and views β of H . In particular, given an H
view β , let σ (β) = λ1 . . .λn be the subsequence of elements of Move1 ∪ Move2 appearing in observations. It follows from 
the definition of the transition relation that σ (β) is an alternating sequence of player 1 and player 2 actions. Since the 
moves of G have a deterministic effect on the states of G , we obtain a play

ϱ(β) = ν0
λ1−→ ν1

λ2−→ ν2 . . .
λn−→ νn

of the game G . We define ν(β) to be the final state νn of ϱ(β).
Consider an action a of H performed at an H view β at stage c. This will be recorded in the view of H , which will have 

the form β a o immediately after this action. We say that the action a is truthful at view β , if

• β = ⊥ is the view obtained at the run s0, or
• β contains an action isOpen j (intuitively, H has already discharged the obligation to prove that L wins), or
• the stage c is in {L0, L1, ⊥} (H makes no assertion at these stages), or
• c = H0 and a = isOpen j and hole j of player 1 is open in state ν(β), i.e., ν(β) satisfies γ 1

j , or
• c = H0 and a = isBlocking j for some j (this corresponds to no assertion by H), or
• c = Hk for k ∈ [1 . . .h2] and a = isBlockingi and not Open2

k (i, ν(β)(i)), i.e., player 2’s hole k is blocked at plate i in 
state ν(β).

Note that we omit the case where c = Hk , k ≥ 1 and a = isOpen j ; intuitively, this corresponds to an assertion of False 
by H , which has an obligation to prove that the play is winning for player 1, and is failing to do so in this instance. We say 
that the view β is truthful if for every prefix β a o, the action a is truthful at β .

We now show that, so long as the play ϱ(β) is undecided, the knowledge set of H encodes the state ν(β). For agent 
u we write Ku(α) for the set of final states of runs r of M(G) with viewu(r) = α, representing agent u’s knowledge of 
the state after obtaining view α. Given a stage c, a state ν of game G and a ∈ M, we let S(c, ν, a) be the set defined by 
S(c, ν, a) = {(c, i, ν(i), a) | i ∈ [1..n]}. Note that ν can be recovered from the set S(c, ν, a).

Proposition 3. Suppose that β is an H view in M(G) of length at least 1 such that β does not contain the observation end and ϱ(β)
is an undecided play of game G. Let c be the stage reached at the end of β and let the final observation of β be a. Then if β is truthful, 
we have K H (β) = S(c, ν(β), a).

Proof. We proceed by induction on the length of β . If β has length 1, then it arises from a run

s0
(aH ,aL)−−−−→ (L1, i,ν0(i),⊥)

so we have β = ⊥aH⊥, and σ (β) is the empty sequence, corresponding to the play ϱ(β) = ν0. (Since we are interested in 
views, we use the explicit form of runs here, with actions of both H and L given, rather than the shorthand form used 
above, which mentioned only actions of the scheduled agents and implies that action the other agents may take all possible 
values.) The runs consistent with β are

s0
(aH ,a)−−−−→ (L1, j,ν0( j),⊥)

where j ∈ P and a is some action of L. It is immediate that the claim holds.



34 F. Cassez et al. / Theoretical Computer Science 631 (2016) 16–42

Inductively, assume that β aH o is a truthful H view in M(G) such that K H (β) = S(c, ν(β), a) for some c ∈ C and a ∈ M. 
We need to show that K H (β aH o) = S(c′, ν(β aH o), a′) for some c′ ∈ C and a′ ∈ M. Note that

K H (β aH o) = {t | s ∈ K H (β) and a ∈ AL and s
(aH ,a)−−−−→ t and obsH (t) = o} .

We consider each of the possible cases of the stage c.

Stage c = L1. Here we have either o = move j or o = Pass, which records the action of L, and the transition does not 
depend on aH . Note that σ (β aH o) = σ (β) o in this case. Let ν(β) o−→ ν ′ , so that ν(β a o) = ν ′ . For each plate i ∈ P, we have 
(L1, i, ν(i), a) ∈ K H (β), and there is a unique transition

(L1, i,ν(i),a)
(aH ,o)−−−−→ (H0, i,ν ′(i),o)

yielding observation o at the next state. It follows that K H (β aH o) = S(H0, ν(β aH o), o).

Stage c = H0. Here we have o = ⊥, and σ (β aH o) = σ (β) and ν(β a o) = ν(β). Since ϱ(β a o) is undecided, ν(β) is not a 
winning position for player 1. Because β aH o is truthful, we cannot have that aH is isOpen j for any j, so we must have 
that aH = isBlocking j for some j. For each plate i ∈ P, we have (H0, i, ν(β)(i), a) ∈ K H (β), and there is a transition

(H0, i,ν(β)(i),a)
(aH ,a′)−−−−→ (L1, i,ν(β)(i),⊥)

yielding observation ⊥ at the next state for each action a′ of L. It follows that K H (β aH o) = S(H0, ν(β aH o), o).

Stage c = L2. Since β does not contain end, here we have o = ⊥, and L cannot have performed the action checkwin. Also 
σ (β aH o) = σ (β) and ν(β a o) = ν(β). Thus, from each (L2, i, ν(β)(i), a) ∈ K H (β), we have a transition

(L2, i,ν(β)(i),a)
(aH ,a′)−−−−→ (⊥, i,ν(β)(i),⊥)

from which we obtain that K H (β aH o) = S(⊥, ν(β aH o), ⊥).

Stage c = ⊥. Here we have that o = Pass or o = movei for some plate i = n1 + 1 . . .n of player 2. Thus, σ (β aH o) = σ (β) o
and if ν(β) o−→ ν ′ then ν(β a o) = ν ′ . For each plate i ∈ P, we have (⊥, i, ν(β)(i), a) ∈ K H (β), and there is a unique transition

(⊥, i,ν(β)(i),a)
(aH ,o)−−−−→ (H1, i,ν ′(i),o)

yielding observation o. It follows that K H (β aH o) = S(H1, ν(β aH o), o).

Stage c = Hi for i = 1 . . .h2. Here we have o = ⊥, and σ (β aH o) = σ (β) and ν(β a o) = ν(β). Since β aH o is truthful and 
σ (β aH o) is undecided, the position is not winning for player 2. Thus, we must have that aH = isBlocking j for some j
such that not Open2

i ( j, ν(β)( j)). For each plate i′ ∈ P, we have (Hi, i′, ν(β)(i′), a) ∈ K H (β), and there is a transition

(Hi, i′,ν(β)(i),a)
(aH ,a)−−−−→ (next(Hi), i′,ν(β)(i′),⊥)

yielding observation ⊥ for every L action a. It follows that K H (β aH o) = S(H1, ν(β aH o), o). ✷

In fact, we can show this characterization of K H (β) in one further case, corresponding to the state of the simulation just 
after player 1 plays a winning move.

Proposition 4. Suppose that β is an H view in M(G) of length at least 1 such that β does not contain the observation end and ϱ(β)
is a play in which the last move is a move of player 1 by which player 1 wins the game. Assume that no shorter prefix of β has this 
property and let the final observation of β be a. Then if β is truthful, we have K H(β) = S(H0, ν(β), a).

Proof. The minimality constraint on β implies that β = β ′aH o where β ′ is at stage L1, that ϱ(β ′) is not a winning play for 
either player, and that o ∈ Move1 is a move of player 1 such that ϱ(β ′aH o) = ϱ(β ′) o−→ ν(β). By Proposition 3, we obtain 
that K H (β ′) = S(L1, ν(β), a) for some a. The argument for the case of c = L1 in the proof of Proposition 4 now yields the 
conclusion. ✷

Proposition 5. Suppose that r is a run of M(G) and s ∈ K H (viewH (r)) is a state in C × P × B × M. Then there exists a run r′ of 
M(G) with final state s such that viewH (r′) = viewH (r) and viewL(r′) = viewL(r).
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Proof. By induction on the length of r. For r = s0, the statement is trivial, since we must have K H (viewH (r)) = {s0}. For 
another base case, suppose r is the initial step of a run. In this case,

r = s0
(aH ,aL)−−−−→ (L1, i,ν0(i),⊥)

and viewH (r) = ⊥ aH ⊥ and viewL(r) = ⊥ aL ⊥. If s ∈ K H (viewH (r)), then we must have s = (L1, j, ν0( j), ⊥) for some j. 
We may take

r′ = s0
(aH ,aL)−−−−→ (L1, j,ν0( j),⊥)

and this has the required properties.
For the induction, let

r = r1
(aH ,aL)−−−−→ t

where the result holds for r1, which is at stage c. Let s ∈ K H (viewH (r)). Since s ∈ C × P × B × M, the final observation 
of viewH (r) is not end, and it follows that t ∈ C × P × B × M also. We have that s = (next(c), i, k, a) for some i, k, a, and 
arises in K H (viewH (r)) from some run

r2
(a′

H ,a′
L)−−−−→ s

with viewH (r2) = viewH (r1) and a′
H = aH and obsH (s) = obsH (t). Necessarily, the final state of r2 is in C × P × B × M. 

Moreover, it is in K H (viewH (r2)) = K H (viewH (r1)). By the induction hypothesis, there exists a run r3 ending in the same 
final state as r2, with viewH (r3) = viewH (r1) and viewL(r3) = viewL(r1). We consider the possibilities for the scheduler 
step c of r1:

• Case c = L1: Note that at this stage, the final L action in r can be deduced from obsH (s) = obsH (t), so in fact we have 
a′

L = aL also. Let

r′ = r3
(aH ,aL)−−−−→ s .

This is a run because r3 and r2 have the same final state, and the final transition in r′ is identical to the final tran-
sition of the run r2. Then viewH (r′) = viewH (r3) aH obsH (s) = viewH (r1) aH obsH (s) = viewH (r) and viewL(r′) =
viewL(r3) aL ⊥ = viewL(r1) aL ⊥ = viewL(r), as required.

• Case c = Hk for k = 0..h2: Transitions at these stages are independent of L, so we can switch the action of L in any 
transition label while keeping the states the same. So

r′ = r3
(aH ,aL)−−−−→ s

is a run and satisfies the required properties.
• Case c = L2: Here it follows from t ∈ C × P × B × M that aL ≠ checkwin. Hence aL = move j for some j, and obsH (t) =

obsH (s) = ⊥. For the same reasons, a′
L = move j′ for some j′ . The transitions for move j and move j′ at this stage are 

identical. We may therefore take

r′ = r3
(aH ,aL)−−−−→ s

and this is a run and satisfies the required properties.
• Case c = ⊥: Here transitions are independent of both players, so

r′ = r3
(aH ,aL)−−−−→ s

is a run and satisfies the required properties.

This completes the proof of the inductive case. ✷

We can now prove the key result that shows that G has a winning strategy for player 1 iff M(G) satisfies NDS.

Lemma 5. There exists a winning strategy for player 1 in G iff there is an L view α of M(G) and an H strategy π that excludes α in 
M(G).

Proof. Only If Part. Assume player 1 has a winning strategy in G . As argued before, this strategy can be given by the list 
. = λ1, λ3 . . . of moves of player 1. The number of moves player 1 needs to win is bounded: indeed, in every play of the 
game, a winning position for player 1 is eventually reached, and no winning position for player 2 is reached before this 
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position. By Koenig’s lemma, there exists a number N such in all plays of the game compatible with ., player 1 has won 
the game at the latest, just after the N-th move. Thus, we may assume that . = λ1, λ3 . . .λN .

We can prove that there exists an H strategy π in M(G) that excludes the L view

α = ⊥a0 ⊥a1 ⊥ (a0 ⊥)3+h2 a3 ⊥ (a0 ⊥)3+h2 . . .aN ⊥a0 ⊥checkwin2,

where a0 denotes any letter in A−
L , and each ai for i odd is the L action that corresponds to λi at stage L1, i.e., ai = λi if 

λi = move j for some j, and ai = checkwin if λi = Pass. The strategy H is defined as follows. For H views β such that 
the sequence of player 1 moves in σ (β) is a prefix of ., we let π(β) be any truthful action of H at β . In all other cases, 
π(β) is chosen arbitrarily.

We first need to show that π is well-defined. For this, we need to show that H is able to act truthfully whenever the 
sequence of player 1 moves in σ (β) is a prefix of .. Suppose, therefore, that the sequence of player 1 moves in σ (β) is 
a prefix of .. Then the play ϱ(β) is not winning for player 2, since . is a winning strategy for player 1. There are two 
possibilities: the play is undecided, or the play is winning for player 1. If the play ϱ(β) is undecided, then by Proposition 3, 
we have that K H (β) = S(c, ν(β), a). Since ν(β) is, by definition, the final state of G reached in the play σ (β), if σ (β) ends 
in a move of player 1 then ν(β) is not a winning state for player 1, and if σ (β) ends in a move of player 2 then ν(β) is not 
a winning state for player 2. In either case, depending on the stage, it is possible to select an action that is truthful at β .

In the other case, the play ϱ(β) is already winning for player 1. Let β ′ be the smallest prefix of β such that σ (β ′) is 
winning for player 1. Since the last action in σ (β ′) is a move of player 1 (we can assume without loss of generality that 
the game is undecided at the initial state), must have that β ′ is at stage H0, and ν(β) is a winning state for player 1. In the 
case that β ′ = β , we choose π(β) to be any action isOpen j such that ν(β) satisfies γ 1

j , i.e., player 1’s hole j is open at all 
plates in ν(β). This is then a truthful action at β . In all other cases, we choose π(β) arbitrarily. (Note that, by definition, 
after H ’s first isOpen j , any choice of H action is truthful.)

We now argue that π excludes view α. To the contrary, suppose that r is run consistent with π and viewL(r) = α. 
Consider β = viewH (r), and write this as β = β1 aH o. Then the sequence of player 1 moves in σ (β1) is .. Since . is a 
winning strategy for player 1, the play ϱ(β1) is a winning play for player 1. Consider the shortest prefix β2 of β1 such that 
σ (β2) is a winning play for player 1. Then β2 is at stage H1, and there is at least one H action a and observation o′ such 
that β2 a o′ is a prefix of β . (In the worst case, β2 = β1 and a = aH .) By construction of π , a is an action isOpen j that 
is truthful at β2. Using Proposition 4, K H (β2) = S(H1, ν(β2), a′) for some a′ . Because isOpen j is truthful at β2, we obtain 
that K H (β2 a o′) = {(⊥, win, ⊥)}.

In particular, the prefix r2 of r with viewH (r2) = β2 a o′ has final state (⊥, win, ⊥). Since L does not perform checkwin
at stage L2 in the interim, the prefix r1 of r with α = viewL(r1) checkwin2 has final state (L2, win, ⊥). But then we get 
that the final state of r, after L performs checkwin, is (⊥, win, 1), which yields an L observation of 1 rather than the final 
observation 2 of α. This is a contradiction.

If Part. Assume there is no winning strategy for player 1 in G . We show that there is no H strategy that can exclude any L
view. To the contrary, assume an L view α that is excluded by an H strategy π . The following must hold:

1. The view α contains a checkwin action at stage L2. Indeed, if no checkwin action at stage L2 occurs, then all L
observations in the view must be ⊥. For any such sequence of L actions, there is always a run consistent with π
yielding L observation ⊥ throughout, so that, contrary to assumption, α is not excluded by π .

2. The view α is not of the form α1 checkwin 1(AL 1)∗ , with α1 being a view at stage L2, and containing no prior 
checkwin action at stage L2. There is always a run consistent with π that yields such a view. There are two possibil-
ities. If the final state s of a run yielding L view α1 is in C × P × B × M, then the checkwin action extends this run 
to one yielding L view α1 checkwin 1 by means of the stage L2 transition

s
checkwin−−−−−−→ (⊥,win,1) .

Otherwise, the state s is in C × F, and must be of the form (L2, r, ⊥), for r ∈ {win, error}, since there has not yet been 
a checkwin at stage L2. In this case, we obtain observation 1 at the next step by means of a transition

(L2, r,⊥)
checkwin−−−−−−→ (⊥, r,1)

for both possible values of r. The resulting states with observation 1 are sinks, so we can extend these runs to obtain 
a run with L view α1 checkwin 1(AL 1)∗ . (In either case, we may take the H action in the final transition to be the 
action prescribed by π , since this transition is independent of H .)

It follows that view α is in the regular set α1 checkwin 2(AL 2)∗ , with α1 being a view at stage L2, and containing no 
prior checkwin action at stage L2.

Let . = λ1λ3 · · ·λN be the player 1 moves of G corresponding to the actions taken by L in α at each L1 stage. (These 
are the same as the L actions, except that we treat checkwin at stage L1 as corresponding to Pass.) The sequence . is 
a player 1 strategy in G . This strategy cannot be winning for player 1 as we have assumed that this player has no winning 
strategy in G . Thus, there exists some sequence λ2 . . .λN−1 of player 2 moves such that the play
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ϱ = ν0
λ1−→ ν1

λ2−→ ν2
λ3−→ . . .

λN−−→ νN

is not winning for player 1. Let r1 be a run consistent with π such that viewL(r1) = α1 and at the m-th occurrence of 
stage ⊥, we take the transition

(⊥, i,k,a)
τ−→ (H1, i,k′,λ2m)

corresponding to move λ2m by player 2. (The choices of L actions in this run come from α1, and the choices of H actions 
are fixed by the strategy π . The only nondeterminism remaining is in the initial step, where we choose the plate i to be 
monitored in the simulation. Since we will work at the level of the H view, any choice suffices.) Let β1 = viewH (r1) be the 
H view obtained along this run. Note that by construction of r1, we obtain that ϱ(β1) = ϱ is the play which is not winning 
for player 1.

We now argue that the view β1 is truthful and the play ϱ(β1) is also not winning for player 2. More precisely, we claim 
that for every prefix β ′aH o of β1, we have (1) the action aH = π(β ′) is truthful at β ′ and (2) the play ϱ(β ′aH o) is not 
winning for player 2. We proceed by induction, assuming that β ′ is truthful and ϱ(β ′) is not winning for player 2. Note 
that since ϱ(β ′) is also not winning for player 1, we obtain by Proposition 3 that K H (β ′) = S(c, ν(β ′), a) for some c ∈ C and 
a ∈ M. We consider the possible cases for the stage c:

1. If c = L1, then ϱ(β ′aH o) = ϱ(β ′) λm−−→ νm for some player 1 move λm . Since ϱ(β ′) is not winning for player 2, an 
extension by a player 1 move also cannot be winning for player 2. But also aH is trivially truthful at β ′ , so both (1) and 
(2) hold.

2. If c = H0, then ϱ(β ′aH o) = ϱ(β ′) is not winning for player 2 by assumption, so we have (2). For (1), note that if 
aH = isBlocking j for some j then aH is trivially truthful at β ′ . We show that the other case, where aH = isOpen j
for some j, is not possible, because it leads to a contradiction. Note ϱ(β ′) is also not a winning play for player 1, so 
ν(β ′) is not a winning position for player 1, and there exists a plate i ∈ P for which not Open1

j (i, ν(β ′)(i)). This means 
that for the state s = (c, i, ν(β ′)(i), a) ∈ S(c, ν(β ′), a) = K H (β ′), we have a transition

s
isOpen j−−−−−→ (L1, error,⊥) .

It follows using Proposition 5 that there exists a run r′ ending in state (L1, error, ⊥) with viewH (r′) = β ′aH o and 
viewL(r′) a prefix of α1. The run r′ is necessarily consistent with π because β is consistent with π . Following the 
actions dictated for L and H by α1 and π , respectively, we may extend this to a longer run r′

1, still consistent with π , 
with viewL(r′

1) = α1, also ending in state (L1, error, ⊥). But then the next checkwin step allows a transition to 
(⊥, error, 2), and we obtain a run with L view α, a contradiction.

3. If c = L2, then aH is trivially truthful, and ϱ(β ′aH o) = ϱ(β ′) is not winning for player 2 by assumption.
4. For stages c = Hk with k ∈ {1 . . .h2}, we have that ϱ(β ′aH o) = ϱ(β ′). It is immediate that ϱ(β ′aH o) is not winning for 

either player, and it remains to show that aH is truthful at β ′ .
As noted above, the assumption that β ′ is truthful, together with the assumption that ϱ(β ′) is not a winning play for 
either player, implies that K H (β ′) = S(c, ν(β ′), a), by Proposition 3. We will show that the desired conclusion that aH
is truthful at β ′ follows from the weaker assumption that β ′ is truthful and K H (β ′) = S(c, ν(β ′), a): this helps with the 
argument for case c = ⊥, which is handled below.
Note first that aH cannot be isOpen j , since the final state of the prefix r′ of r with viewH (r′) = β ′ is in S(c, ν(β ′), a), 
hence in C × P × B × M, so the action isOpen j results in a transition to the state (next(c), error, ⊥) in r. It follows 
that the final state of r1 is (L2, error, ⊥), and then the subsequent action checkwin produces a run consistent with π
with view α, contrary to the assumption that π excludes α. Hence aH = isBlocking j for some j.
Suppose that Open2

k ( j, ν(β ′)( j)). Since K H (β ′) = S(c, ν(β ′), a), we have that (c, j, ν(β ′)( j), a) ∈ K H (β ′). By Proposi-
tion 5, there exists a run r′ ending in state (c, j, ν(β ′)( j), a) with viewH (r′) = β ′ and viewL(r′) a prefix of α1. The 
transition

(c, j,ν(β ′)( j),a)
isBlocking j−−−−−−−−−→ (next(c), error,⊥)

extends this to a run whose L view remains a prefix of α1, and by following strategy π and the remaining L actions in 
α1 we may continue to extend to the point where we obtain a run r′

1 with viewL(r′
1) = α1 and final state (L2, error, ⊥). 

But then the next checkwin step allows a transition to (⊥, error, 2), and we obtain a run consistent with π with L
view α, a contradiction. Thus, in fact, we must have not Open2

k ( j, ν(β ′)( j)), so that aH is truthful at β ′ , as required.
For the purposes of the next case, we make one further conclusion. Note that by definition of the transi-
tions for isBlocking j at stage Hk , we get from K H (β ′) = S(c, ν(β ′), a) that K H (β ′aH o) = S(next(c), ν(β ′), o) =
S(next(c), ν(β ′aH o), o), so we preserve the weakened assumption. Thus, since the above argument applies for all 
k = 1 . . .h2, we have that for all such k, there exists j such that not Open2

k ( j, ν(β ′)( j)). That is, no hole of player 2 is 
open in ν(β ′). It follows that ν(β ′) cannot be a winning position of player 2.

5. If c = ⊥, then aH is trivially truthful, and ϱ(β ′aH o) = ϱ(β ′) λm−−→ νm , where o = λm is a move of player 2. As noted above, 
K H (β ′) = S(c, ν(β ′), a) for some a. The transitions for case c = ⊥ then imply that K H (β ′aH o) = S(c, ν(β ′aH o), o). We 
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therefore satisfy the weakened assumption for the stages H1 . . . Hh2 in the previous case. It therefore follows using the 
argument of the previous case that ν(β ′ aH o) = νm cannot be a winning position of player 2. Thus, from the assumption 
that ϱ(β ′) is not winning for either player, we obtain that ϱ(β ′aH o) is not winning for either player.

This completes the argument that β1 is truthful and ϱ(β1) is not a winning play for either player. By Proposition 3, we 
obtain that K H (β1) = S(c, ν(β1), a) for some a. In particular, the final state of r1 must be in C × P × B × M, and the next 
checkwin action then results in a run consistent with π with L view α, a contradiction. ✷

Again, we point out that the hardness result holds for scheduled machines already.

5. Synchronous bisimulation-based notions

In this section we establish the result:

Theorem 6. For the class of finite state synchronous machines, RES is in PTIME.

The following Lemma shows that in searching for an unwinding relation on a machine M , it suffices to consider equivalence 
relations on the reachable states of M .

Lemma 6.

1. If there exists a synchronous unwinding relation on M, then there exists a largest such relation, which is transitive.
2. If all states in M are reachable then the largest synchronous unwinding relation (if one exists) is an equivalence relation.
3. A system satisfies RES iff its restriction to its reachable states satisfies RES.

Proof.

1. First we show that the set of synchronous unwinding relations on M is closed under union. Let ∼1 and ∼2 be two 
unwinding relations on M . Clearly Items 1 and 2 of Definition 2.5 hold for ∼1 ∪ ∼2. Item 3 holds as well as if s ∼1 ∪ ∼2 t
then either s ∼1 t or s ∼2 t holds. Assume s ∼1 t , then as ∼1 is an unwinding relation, by Item 3 of Definition 2.5, it 
follows that for all a1, a2 ∈ AH and a3 ∈ AL , if s (a1,a3)−−−−−→ s′ there is some t′ such that t

(a2,a3)−−−−−→ t′ and s′ ∼1 t′ , which 
implies s′ ∼1 ∪ ∼2 t′ . This implies that there exists a largest unwinding relation.
Second, the composition of two unwinding relations is an unwinding relation. Again Items 1 and 2 of Definition 2.5 hold 
for ∼1 ◦ ∼2. Assume s ∼1 ◦ ∼2 t . In this case there is some x such that s ∼1 x and x ∼2 t . As ∼1 is an unwinding relation, 
by Item 3 of Definition 2.5, for any a1, a2 ∈ AH and a3 ∈ AL , if s (a1,a3)−−−−−→ s′ , there is some x′ such that x (a2,a3)−−−−−→ x′ and 
x′ ∼1 t′ . As x ∼2 t , and as ∼2 is an unwinding relation, Item 3 Definition 2.5 applied with a1 = a2 implies there exists 
some t′ such that t (a2,a3)−−−−−→ t′ and x′ ∼2 t′ . Putting it all together, there is some t′ such that t (a2,a3)−−−−−→ t′ and some x′

such that s′ ∼1 x′ ∼2 t′ i.e., s′ ∼1 ◦ ∼2 t′ .
It follows that the transitive closure of any synchronous unwinding relation is a synchronous unwinding relation. In 
particular, the largest such relation must be transitive.

2. Let ∼ be the largest synchronous unwinding relation. By definition and the Item 1 above, we already have that ∼
is symmetric and transitive, so it suffices to show reflexivity. Let s be a reachable state. In this case there is a run 
s0a1s1 . . .ansn of M such that s = sn . We need to show that s ∼ s. The proof is by induction on the length of the run.

The base case of s0 ∼ s0 is immediate from Item 1 of Definition 2.5. Suppose si ∼ si, 0 ≤ i ≤ n. Assume sn
an+1−−−−→ sn+1. 

As sn ∼ sn , and applying Item 3 of Definition 2.5 to the right handside copy of sn , there exists a transition sn
an+1−−−−→ s′

for some s′ and si+1 ∼ s′ . Because ∼ is symmetric, we have s′ ∼ sn+1, and by transitivity sn+1 ∼ sn+1.
3. Any synchronous unwinding relation is still a synchronous unwinding relation when restricted to the reachable states. 

Conversely, given a synchronous unwinding relation on the reachable states, the (identical) relation which extends this 
to all states by union with the empty relation on unreachable states is also a synchronous unwinding relation. ✷

Using Lemma 6, we can design an algorithm to compute the largest synchronous unwinding relation, or the empty 
relation if none exists. By part (3) of Lemma 6 we may assume that all the states of the machine M = ⟨S, A, s0, →, O , obs⟩
are reachable.

The algorithm is an adaptation of the algorithm for calculating the relational coarsest partition by Kanellakis and 
Smolka [28]. For a partition P or equivalence relation ≈, we write [s]P or [s]≈ for the equivalence class containing el-
ement s. We say that a partition P of the state space S is stable if the corresponding equivalence relation ∼P satisfies 
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Algorithm 1: Compute-Largest-Unwinding(M).
Input: A synchronous machine M = ⟨S, A, s0, →, O , obs⟩. /* We assume S is reachable */
Output: The largest unwinding partition P on M , or ∅ if none exists
/* Initial partition P is given by the set of L observations */

P ← {obs−1
L (o) | o ∈ O };

Loop: /* Check stability of each subset p ∈ P */
foreach p ∈ P do

foreach s ∈ p and (aH , aL) ∈ A do

Let R(s, aH , aL) = {[t]P | s (aH ,aL )−−−−→ t};

/* Check reflexive case of condition (3) */
foreach s ∈ p and a3 ∈ AL do

if there exists a1, a2 ∈ AH with R(s, a1, a3) ̸= R(s, a2, a3) then
return ∅;

/* R(s, aH , aL) is independent of aH */
Fix aH ∈ AH ;
For s, t ∈ p and a3 ∈ AL let s ≈a3 t when R(s, aH , a3) = R(t, aH , a3);
if there exists s, t ∈ p and a3 ∈ AL with s ̸= t and s ̸≈a3 t then

/* split p according to equivalence classes [s]≈a3
of ≈a3 */

P ← (P \ {p}) ∪ {[s]≈a3
| s ∈ p};

Go to Loop

/* P contains the largest stable partition */
return P ;

condition (3) of Definition 2.5.3 The idea of the algorithm is to compute the coarsest stable partition satisfying condition (2) 
of Definition 2.5, by iteratively refining an existing partition if the latter is not stable. Given the current partition P , if there 
exists a (reachable) state s such that condition (3) of Definition 2.5 is not satisfied with t = s, the algorithm terminates and 
returns the empty relation: this follows from Lemma 6(2) because reflexivity is a necessary condition for the existence of an 
unwinding relation. Otherwise, we check whether it is stable for s ̸= t . If it is, we have found the largest unwinding relation. 
If not, we refine the current partition based on the counterexample found.

The procedure is given by Algorithm 1. In each refinement step, with the current partition equal to P , we first compute 
the set

R(s,aH ,aL) = {[t]P | s
(aL ,aH )−−−−→ t}

for each state s, and L action aL and H action aH . Rule (3) with respect to ∼P is equivalent to the statement that if s ∼P t
then R(s, aH , aL) = R(t, a′

H , aL) for all L actions aL and H actions aH , a′
H . We first check this when s = t . Note that once this 

condition has been verified, we have verified that R(s, aH , aL) does not depend on the second argument aH . To check the 
non-reflexive cases, it therefore suffices to check the condition with respect to any fixed aH .

We can now prove Theorem 6:

Proof of Theorem 6. Algorithm 1 terminates when no split occurs in the main loop. Since, when a split occurs, the new 
partition is a strict refinement of the previous one, the number of iterations of the main loop is at most |S|. For each p ∈ P , 
computing the function R can be done in time O ((|AH | × |AL | × |p|) + |p · →|). Checking the reflexive cases can be done 
in time O (|AH |2 × |AL | × |p|), and the non-reflexive cases can be done in time O (|p|2 × |AL |). Hence the foreach loop over 
p ∈ P can be handled in time O (|AH |2 × |AL | × |S|2 + |→|). Since there are at most |S| iterations, we have a total time of 
O (|AH |2 × |AL | × |S|3 +|→| × |S|). Because |→| may be as large as |S|2, this is O (|AH |2 × |AL | × |S|3). (Literature subsequent 
to Kanellakis and Smolka has shown how to optimize their algorithm using careful scheduling, union-find data structures
and amortized analysis, as well as parallel implementation. Similar optimizations may be applicable to our algorithm, but 
we will not pursue this here.)

To argue correctness, we first show that if there exists a synchronous unwinding ∼ on M , corresponding to partition P∼ , 
the algorithm maintains the invariant that P∼ is a refinement of P . That this holds for the initial value of P follows from 
condition (2) of Definition 2.5. The only case where P changes value is where we have p ∈ P and a3 ∈ AL with

1. R(s, a1, a3) = R(s, a2,a3) for all s ∈ p and a1, a2 ∈ AH , (there are no reflexivity violations), and
2. R(s, aH , a3) ̸= R(t, aH , a3) for some s, t ∈ p and aH ∈ AH .

3 Our definition of stability differs from that of Kanellakis and Smolka: they require that for each of a set of functions fa : S → P(S) (each corresponding 
to transitions with respect to some label a), and partition p ∈ P , for states s, t ∈ S we have s ∼P t implies that that fa(s) ∩ p = ∅ iff fa(t) ∩ p ̸= ∅. In this 
condition, we apply the same function to s and t . Our definition amounts to the application of different functions to s and t , corresponding to transitions 
with respect to (a1, a3) and (a2, a3), respectively.
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In this case, we obtain the new value P ′ for P by splitting p into the collection {[s]≈a3
| s ∈ p}, where ≈a3 is defined 

on p by s ≈a3 t if R(s, aH , a3) = R(t, aH , a3). Suppose that P∼ is not a refinement of P ′ . Since the only element of P that 
changed was p, we must have s, t ∈ p with s ∼ t and R(s, aH , a3) ̸= R(t, aH , a3). The latter means that there exists p′ ∈ P

with (without loss of generality) p′ ∈ R(s, aH , a3) and p′ ∉ R(t, aH , a3). That is, there exists s′ ∈ p′ such that s (aH ,a3)−−−−→ s′ , but 
for all t′ with t (aH ,a3)−−−−→ t′ we have t′ ∉ p′ . Because ∼ is a synchronous unwinding, s ∼ t , and s (aH ,a3)−−−−→ s′ , there exists t′ with 
t

(aH ,a3)−−−−→ t′ and s′ ∼ t′ . But because P∼ refines P , this implies that t′ ∈ [s′]P = p′ , a contradiction. We conclude that in fact 
P ′ refines P .

The correctness argument now follows straightforwardly. Suppose that the algorithm outputs ∅: we show that there 
exists no synchronous unwinding on M . Suppose to the contrary that ∼ is a synchronous unwinding. At the time the 
algorithm terminates, we have R(s, a1, a3) ̸= R(s, a2,a3) for some p ∈ P , some s ∈ p and some a1, a2 ∈ AH . Without loss of 
generality, there exists some p′ ∈ P and t ∈ S such that s (a1,a3)−−−−→ t ∈ p′ but there exists no t′ ∈ p′ such that s (a2,a3)−−−−→ t′ ∈ p′ . 
By reflexivity of ∼, we have s ∼ s, so there exists t′ such that s (a2,a3)−−−−→ t′ and t ∼ t′ . Because P∼ is a refinement of P , we 
obtain t′ ∈ [t]P = p′ , a contradiction. We conclude that there exists no synchronous unwinding.

Conversely, suppose that the algorithm outputs a partition P ≠ ∅, and let ∼P be the corresponding equivalence relation. 
Since P is a refinement of {obs−1

L (o) | o ∈ O }, we have that s ∼P t implies obsL(s) = obsL(t), so condition (2) of Definition 2.5
is satisfied. Moreover, we have, for all p ∈ P , that

1. R(s, a1, a3) = R(s, a2,a3) for all s ∈ p and a1, a2 ∈ AH ,
2. R(s, aH , a3) = R(t, aH , a3) for all s ̸= t ∈ p and aH ∈ AH .

Together, these imply that ∼P satisfies condition (3) of Definition 2.5. Finally, since P is a partition, we have s0 ∼P s0, so 
condition (1) also holds. ✷

6. Related work

In asynchronous machines the verification complexities of NDI and NDS are both PSPACE-complete, and RES (based on 
asynchronous unwinding) is in polynomial time [18,19,43]. Interestingly, PSPACE is also the complexity result for verifying 
Mantel’s BSP conditions [30] on asynchronous finite state systems. For (asynchronous) push-down systems, the verification 
problem is undecidable [17]. The notion BNDC [18], essentially strengthens non-deducibility on strategies in an asyn-
chronous process algebra setting by replacing trace equivalence by bisimulation equivalence. Two variants of BNDC, that 
restrict the quantification over the High attacker to finite or only “regularly divergent” processes, are shown in [33] to be 
decidable, by reduction to an EXPTIME problem, but exact complexity bounds are not provided. A general framework for 
asynchronous unwinding definitions is proposed in [7,8], and it is shown in [7] that the resulting security notions are PTIME 
decidable. This framework has been extended to a range of settings and applied to a variety of applications [11,15,21].

A number of works have defined notions of security for synchronous or timed systems, but fewer complexity results are 
known. Köpf and Basin [26] define a notion similar to RES and show it is PTIME decidable. Similar definitions are also used 
in the literature on language-based security [3,45].

Our semantic model is discrete-time with observers who see every clock tick. In the context of dense-time systems (de-
fined by timed automata [2]) various notions of non-interference [18] have been defined [25] which state, using either 
trace-based or (bi)-simulation-based definitions that Low cannot distinguish the case where High does not act at all from 
the case where High may choose any action at any time. (These definitions consider just two cases of possible High strategy, 
whereas NDS quantifies over all High strategies, though there is the further difference that our framework requires High to 
act at all times it is scheduled.) A related problem, the opacity verification problem is studied in [12]. [25,12] show that 
these basic non-interference verification and opacity problems are undecidable for timed automata. More recent works [4,5]
investigate subclasses of timed automata for which the non-interference problems become decidable along with solutions 
to corresponding controller synthesis problems. The restrictions required for decidability (e.g., determinism of transitions for 
a given action) are more severe than in our results for the discrete case.

Focardi et al. [20] define a spectrum of definitions related to ours in a timed process algebraic setting, and state a decid-
ability result for one of them, close to our notion NDS. However, this result concerns an approximation to the notion “timed 
nondeducibility on compositions” (tBNDC) that is their real target, and they do not give a complexity result. Beauquier and 
Lanotte define covert channels in timed systems with tick transitions by using strategies [9]. They prove that the problem 
of the existence of a covert channel in such systems is decidable. However, their definition of covert channel requires that 
H and L have strategies to force a system into sets of runs with disjoint sets of L views. The induced definition on free of 
covert channels appears to be a weaker notion than NDS.

It has been noted in [7] that it is of interest to consider security properties that are persistent in the sense that a system 
is secure iff it remains secure when the initial state is reset to any reachable state. (This is motivated in [7] using arguments 
about process mobility, but it can also be understood as saying that even if all secrets generated to a given moment of time 
should leak, the system operates in such a way that secrets freshly generated from that time on are kept secret.) Of the 
properties we have considered, RES is persistent (this is immediate from Lemma 6), but NDI and NDS are not. (Fig. 6 gives 
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Fig. 6. A system non-persistently satisfying NDI and NDS.

an example of a system that satisfies both NDS and NDI from the initial state s0, but not from the state s1. Low actions do 
not affect the transitions, so are omitted.) Simply by enumerating all reachable states, our upper bounds on the complexity 
of NDI and NDS also apply to the persistent versions of these definitions, which check these properties from all reachable 
states. The lower bound of PSPACE for NDI also applies to the persistent version of NDI, because in the construction we gave 
for the lower bound, high actions have no effect after the initial state. We would conjecture that the persistent version of 
NDS is also EXPSPACE-hard, but leave this open.

For verification of large scale systems, it is desirable to have a compositional methodology, so that to prove security of 
a large system it suffices to prove security of its subcomponents and check that the composition has been done in a safe 
way. Compositionality of definitions of security has therefore been a topic of interest [10]. Our notion NDI is known to be 
non-compositional [34] but our notion of NDS is closed under composition [35], as are notions similar to our RES [26,34,
32]. These results require a slightly more fine-grained semantic model than the one that has sufficed for our complexity 
analysis in this paper, with inputs and outputs composed of multiple lines that can be hooked up in different ways to 
form a composition. We therefore do not attempt to state compositionality results in detail here. (We remark that in an 
asynchronous setting, the notion BNDC, which is similar in spirit to our NDS, is not compositional [33] but there exist 
stronger compositional variants [7].)

The definitions of security we have considered in this paper are based on possibilistic notions of information flow. The 
literature has also considered probabilistic notions of information flow. Wittbold and Johnson [46] showed that several 
possibilistic definitions of security, including NDI and NDS, may hold in a natural class of systems that nevertheless have 
probabilistic flows of information. Gray [23,22] defined probabilistic variants of NDI, NDS and RES in a discrete-time state 
machine model. More recently, related definitions have been proposed in contexts of process algebra [1] and dense-time au-
tomata [29]. There has been limited work on automated verification of such probabilistic notions. [13,16] develop complexity 
results for probabilistic deducibility of initial input values in terminating programs, and probabilistic opacity problems are 
considered in [6]. In general, probabilistic verification problems can be expected to have significantly higher computational 
complexity than corresponding possibilistic versions of these problems. This being the case, the possibilistic definitions 
remain of interest, as providing more efficiently testable sufficient conditions for detecting insecurity of a system.

7. Conclusion

We remarked above that nondeducibility-based notions of security may have the disadvantage that they do not readily 
support a compositional approach to secure systems development, motivating the introduction of unwinding-based defini-
tions of security. The complexity results of the present paper can be interpreted as lending further support to the value of 
unwinding-based definitions. We have found that the two nondeducibility notions we have considered, while both decidable, 
are intractable. On the other hand, the unwinding-based notion of synchronous restrictiveness has tractable complexity. This 
makes this definition a more appropriate basis for automated verification of security. Even if the desired security property 
is nondeducibility on inputs or nondeducibility on strategies, it is sufficient to verify that a system satisfies synchronous 
restrictiveness, since this is a stronger notion of security. It remains to be seen whether there is a significant number 
of practical systems that are secure according to the nondeducibility-based notions, but for which there does not exist a 
synchronous unwinding. If so, then an alternate methodology needs to be applied for the verification of security for such 
systems.
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