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Abstract

Static source code analysis for software bug detection has come a long way since its early beginnings as a
compiler technology. However, with the introduction of more sophisticated algorithmic techniques, such as
model checking and constraint solving, questions about performance are a major concern. In this work we
present an empirical study of our industrial strength source code analysis tool Goanna that uses a model
checking core for static analysis of C/C++ code. We present the core technology and abstraction mechanism
with a focus on performance, as guided by experience from having analyzed millions of lines of code. In
particular, we present results from our recent study within the NIST/DHS SAMATE program. The results
show that, maybe surprisingly, formal verification techniques can be used successfully in practical industry
applications scaling roughly linearly, even for millions of lines of code.
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1 Introduction

Software development cycles are a major competitive aspect in many market seg-

ments including mobile phone handsets, games, and consumer electronics. The

obvious goal is to deliver software as fast as possible, as cheaply as possible, and at

the highest quality possible. For these reasons, automation and tool support play

an important role. One of the areas for a high potential of automation and cost

saving is testing and debugging, where around 50% of all development costs are

spent.

One of the fastest growing tool spaces for testing and debugging is in static anal-

ysis. Static analysis is a complementary approach to traditional testing techniques.

Instead of executing the source code on test suites, static analysis operates on the

code compute solutions of semantic equations and detect problems that may lead

to crashes, memory leaks, security flaws, etc. Originating from compiler optimiza-
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tion [2] static analysis has developed into sophisticated tools for bug and security

vulnerability detection [7,15,13].

In recent years new algorithmic techniques have been developed by the formal

methods community and approaches like model checking, SAT solving, and abstrac-

tion refinement are increasingly used for software analysis [14,5,8]. While these

technologies can provide powerful capabilities, they come with the stigma of not

being practicable for real-life systems, as being slow, and not being scalable to large

code bases. That is, these new technologies are suspected to lack in performance or

have to sacrifice accuracy.

The adoption of these new techniques by industry is only possible if the following

problems are addressed properly.

• Scalability and Efficiency: new tools must be able to analyze large code bases

while being very fast so that they can be used while programming.

• Accuracy: code analysis is done on an abstraction of programs, which may result

in false positives, i.e. bugs that are artifact of the abstraction rather than real

bugs in the program. The ratio of false positives versus issued warnings should

be kept low to give useful feedback to the programmer.

• Smooth integration with popular IDEs: Software development now heavily relies

on the use of IDEs like Eclipse or Visual Studio. Moreover, in some areas like

embedded systems development, particular compiler versions (or build processes)

are used and a versatile tool should accommodate them.

In this work, we report on the source code analysis tool called Goanna that

performs static analysis for large scale industrial C/C++. Goanna is a commercial

tool that uses standard model checking and other formal analysis techniques at its

core to detect many classes of software bugs and security issues automatically at

software development time.

We specifically address the challenges cited above and we present some detailed

results from our recent participation in the Software Assurance Metrics And Tool

Evaluation (SAMATE) 1 program run by the National Institute of Standards and

Technology (NIST) and the Department of Homeland Security (DHS). We present a

number of qualitative results and real-life software bugs found in large open-source

code bases. Additionally we give detailed quantitative analysis on the scalability

of our model checking approach, both in terms of lines of code (LoC) as well as

number of checks performed.

The rest of this paper is organized as follows. In Section 2 we motivate the

use of static analysis in the software development life-cycle. Section 3 examines

the techniques used by Goanna to achieve scalable and accurate results. Section 4

presents results achieved in SAMATE tests. Section 5 discusses our experience

with integrating Goanna into existing development environments. Finally, Section 6

draws conclusions and discusses future work.

1 http://samate.nist.gov/
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2 Static Analysis in Software Engineering

To better understand the role of static analysis in industrial software development,

we briefly characterize where static analysis, and in essence our Goanna tool, fits

into the software development life-cycle (SDLC) and show how it integrates with

existing software engineering processes in practice.

In a simplified water flow model of the software development life-cycle there

are four stages: design, implementation, quality assurance, and finally the released

product. While most software development processes are not executed in this strict

sequential order, it nonetheless highlights an important fact: the greater the time

between when a software bug introduced into a system and its point of detection,

the greater the cost of fixing that bug. For instance, a bug introduced in the design

stage is rectified at relatively low costs if it is detected immediately in the same

stage. However, it is often prohibitively expensive when detecting a serious design

flaw after product release.

Implementation bugs are often even harder to detect than design bugs. This

is why around 50% of all software costs are spend in testing and debugging. Con-

sequently, any automated support that can identify certain classes of bugs earlier

on leads to immediate cost savings. Static program analysis is such an automated

technology working directly at development time on the source code. Unlike tradi-

tional testing techniques, static analysis does not require manual intervention or a

completed build, but can be applied to sub-components or single files.

There is a large cost benefit on cutting down traditional implement-test-debug

cycles. It is worth noting that static analysis is not a replacement for traditional

testing, but a complementary technique for many non-functional requirements, such

as detecting memory leaks, crashes and security holes.

3 Goanna Core Technology

In this section we describe the underlying core technology of Goanna. In particular,

we explain the model checking approach to static analysis, core abstract interpreta-

tion applications, and additional techniques for path-sensitive and inter-procedural

analysis. The combination of these technologies is used to detect potential crash

causing code, security vulnerabilities, memory leaks and the like. A detailed list of

detected vulnerabilities and checks that Goanna can perform can be found in [12].

3.1 Model Checking

Some of the checks performed by Goanna are beyond the scope of syntactical anal-

ysis or variable range analysis as they are path-sensitive. This is why one core

technology implemented in Goanna is model checking. A model is a transition

system annotated with atomic propositions. A check or property is defined in a

temporal logic [3] that can capture path-dependent specifications.

Model checking [3] is a technique that enables one to check whether all paths in a

model satisfy a property. If the property is violated, a counter-example is provided
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vo id foo() {
0: i n t x, *a;
1: i n t *p=malloc( s i z e o f ( i n t ));
2: f o r (x=10;x>=0;--x) {
3: a=p;
4: i f (x<=1)
5: free(p);
6: }
7: }

�0

�1 mallocp

�2�7

�3usep

�4

�5freep

�6

x′ = [10, 10]

x′ = x ∩ [0,∞]

x′ = x ∩ [−∞, 0]

x′ = x ∩ [−∞, 1]

x′ = x ∩ [2,∞]

x
′ =

x
+
[−

1,
−1

]

Fig. 1. Example program and the generated CFG with annotations, and generated interval equations for
variable x. The annotated CFG is used for model checking, the interval equations for abstract data tracking.

by the model checking algorithm.

We apply model checking to source code by mapping a C/C++ program to its

corresponding control flow graph (CFG), and adding labels to the CFG which are

the atomic propositions of interest (see [9]).

Consider the contrived program foo in Fig. 1. The CFG of foo is annotated

with atomic propositions 2 describing the operations performed on pointer p. The

labels are mallocp, usep and freep which respectively stands for p is allocated some

memory, p is used, and p is freed. An important property of the program should be

that the pointer p is not freed and then used. Such a property can be expressed in

Computation Tree Logic (CTL):

AG (mallocp implies AG (freep implies not(EF usep))),

where AG stands for “for all paths and in all states” and EF for “there exists a

path and there exists a state”. This CTL formula means that whenever there is a

malloc for a resource p, if it is followed by a free of p, then there is no path such

that p is used later on.

The model checking technique has many advantages among them: (1) fine-tuning

properties is easy and we can express stronger/weaker requirements by changing the

CTL path quantifier, i.e. changing an A to an E and visa versa; (2) unlike standard

static analysis, the model checker produces a counter-example 3 when a property is

violated and this can be fed back to the programmer.

Implementation. When analyzing source code, the models are usually small but

the properties to check are numerous (see Section 4.2). Most of the CTL formulas do

not have nested modalities and thus are rather easy to check. This is why Goanna

2 How the labelling is carried out is described in Section 3.2.
3 This counter-example on the CFG might be spurious though.
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features an explicit state model checker that is specifically designed to efficiently

check a large number of properties on a model, reusing previously computed results

(by caching).

3.2 Tree-Pattern Matching

A prerequisite to model checking is to annotate the source code (or CFG) with

the atomic propositions of interest. In our approach we apply pattern matching to

the internal representation of the parsed source code, i.e. the abstract syntax tree

(AST).

Implementation. Basic regular expression pattern matching is sufficient for some

queries, such as whether a library function such as strcpy is used or not. However,

queries can become more complicated, and a series of interdependent queries may be

used for more advanced checks, for example to identify inconsistent use of semantic

attributes. For this purpose Goanna uses tree-pattern matching [4] on the AST.

This enables expressive queries taking branching substructures into account and is

flexible enough to define a wide range of non path-dependent checks.

3.3 Abstract Data Tracking

The techniques introduced so far are well suited for path-dependent checks. How-

ever, in order to detect arithmetic errors e.g. division by zero or buffer overflows,

the ranges of values for certain variables must be considered.

A general technique to automatically approximate and track data values is ab-

stract interpretation [6]. Goanna implements abstract interpretation to estimate

the potential ranges for each interger and pointer variable at each program loca-

tion. This enables us to, for instance, estimate the potential index values whenever

an array is accessed or NULL pointer dereference.

Implementation. Different domains can be used for data tracking with varying

levels of precision. Goanna uses a variant of interval constraint analysis that is

reasonably precise while remaining fast. For this purpose we translate the relevant

program semantics into equations over intervals as seen in Fig. 1. Here, intervals

[a, b] are represented by their lower bound a and upper bound b, which can be

sometimes unknown in which case they are ±∞. Operations on the intervals are

defined in terms of addition, multiplication, union, and intersection. Each equation

constraint involves a variable with its new value denoted as its primed version.

The equations and algorithms implemented in Goanna are based on some efficient

techniques described in [11].

3.4 Inter-Procedural Analysis

While the aforementioned techniques help to detect various vulnerabilities and are

often complementary, one of the key factors to success is being able to scale to large

code bases while remaining accurate. Many potential source code bugs require

understanding of the overall call structure of a program, and being able to track
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data and control flow across function boundaries.

Implementation. To overcome this challenge we have developed a compositional

approach computing function summaries automatically. These function summaries

contain information that is needed for particular checks e.g. ranges of variables re-

turned by the function, existence of path to NULL pointer dereference. Instead of

propagating information of the whole function, which can be prohibitively large,

only the summary information is used. The information for each function is stored

in a database that can be enriched when some new knowledge is available e.g. con-

straints on the input data of the function.

3.5 Data Flow Analysis

On top of the previous techniques we also use data flow analysis [2] to examine the

flow of information between variables and other elements of interest. An example is

checking for the flow of tainted data in a security context. While data flow analysis

is useful to track information flow, it is less amendable to precision improving tech-

niques such as refinement and also does not typically return any counter-example

traces if a program property is violated.

3.6 Current Limitations

As most of the static analysis tools, Goanna is not sound and thus it cannot be

guaranteed that every defect will be discovered. Moreover, the commercial version of

Goanna currently does not handle: pointer aliasing, multi-theading and refinement.

4 Performance Results

We report on Goanna’s performances based on the independent evaluation project

SAMATE by NIST and DHS. The project conducted the third Static Analysis Tool

Exposition (SATE) in 2010 to evaluate static analysis tools and try and find security

bugs in source C/C++ code [1].

Various test suites were provided for SATE 2010 among them the code of open

source projects Dovecot, Wireshark, and Chromium. A detailed report with the

weaknesses discovered by each tool was submitted by each group to NIST experts.

The experts analyzed the results and assigned one of the following categories to

each discovered weakness.

• Security: a weakness relevant to security.

• Quality: a weakness pertaining to poor code quality. The weakness may not be

relevant to security, but requires developer attention.

• Insignificant: a true but insignificant weakness.

• False: Not a weakness, i.e. a false positive.

• Unknown: unable to determine correctness or significance.

NIST experts more specifically analyzed the reports of the different tools for
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Dovecot. The summary of this analysis is available for download under the section

Sate Analysis/Analysis Subset 4 .

The figures we report hereafter were obtained using Goanna Central 2.5 (the

command line version) with the default settings and whole-program analysis. The

experiments were conducted on a Ubuntu 10.11 Virtual Machine with 2GB memory,

on a Windows 7 host, running on an Intel Core i5 2.5 GHz processor. While this

setup is not optimized for speed, the quantitative results are indicative of Goanna’s

performance.

4.1 The Dovecot Code Base

The Dovecot code base consists of 672 files and each file has on average 322 LoC

before pre-processing, and 2685 LoC after pre-processing. The maximum number of

LoC is 2685 before pre-processing and 6623 after pre-processing. Each file consists

on average of 21 separate functions with a maximum of 128 functions per file. Fig. 2
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Fig. 2. Lines of code distribution per file and before pre-processing versus after pre-processing.

(left) shows the distribution of the LoC before pre-processing; nearly 60% of all files

have less than 250 LoC. The number of functions, and LoC after pre-processing are

similarly distributed, with about 50% smaller than the mean.

Fig. 2 (right) shows that there is only a weak correlation between the LoC before

and after pre-processing, with quite a few outliers. There are a fair number of files

that have few LoC before, but a rather large number of LoC after pre-processing.

Dovecot is a good representative of a large size software project (this is why it

was chosen by NIST) and the results we give in the sequel are inline with what is

obtained on similar industrial code bases.

4.2 Scalability and Runtime

As described in Section 3, Goanna uses model checking for the analysis of C/C++

source code. It model checks the program labelled CFGs against CTL formulas. A

classic result is that CTL model checking is linear in the number of states and the

4 http://samate.nist.gov/SATE2010/resources/sate2010.tgz
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size of the CTL properties. Each Goanna check translates to one CTL property.

Moreover, for each program variable there might be one check of the same class.

For example, each variable has to be checked for being uninitialized. The scalability

of our analysis will therefore depend on the size of CFG and number of properties

that have to be checked.
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Fig. 3. Number of states per file and runtime per file

Fig. 3 (left) shows the distribution of the sizes (number of states of the CFG) of

the CFGs per file. Each file has on average 1372 states, but at most 10048. Fig. 3

(right) shows that the number of states increases roughly linearly with the number

of LoC before pre-processing.
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Fig. 4. Runtime versus number of states and properties per file.

Fig. 4 depicts the relation between the runtime and both the number of states

and the number of CTL properties 5 . If we look at the relation between runtime

and the number of generated states we see that there is an almost linear relation

between the two. Since the number of states depends linearly on the LoC (Fig. 3)

this also means, the runtime is linear in the size of the code base. There is a

less pronounced linear relation between the number of properties and the runtime.

Indeed, this relation seems to be dominated by the relation between the number

5 We omit one outlier with 20636 properties and 3125 states.
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of properties and the number of states. For Dovecot 27% of files the Goanna tool

generates more properties than states.

The runtime per file is on average 1.4 seconds, well in the order of compile time.

Recall that the average size after pre-processing is 2685 LoC. As Fig. 4 (left) shows

more than 50% of files are analysed in less than 1 second.

In summary, the code size and in turn the number of states that are generated

is a good indicator for the runtime. It is worth mentioning though, that model

checking itself only accounts for around 20% of the overall runtime. The rest of the

runtime is spent in parsing, generating the models, pattern matching, or analyzing

data flow. The number of generated states is also a good measure for the complexity

of the source code, and thus for the complexity of other types of analysis techniques.

4.3 Quality and Accuracy of the Analysis

Fig. 5 gives the number of weaknesses (for each category defined at the beginning

of this section) detected by some tools that took part in the SATE 2010 evaluation

for Dovecot. 6

Goanna is rather accurate and has the highest number (25) true weaknesses

(security and quality) compared to 12, 10 and 2 for the other tools: this shows that

model-checking can actually improve the accuracy of a tool.
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Fig. 5. Distribution of the weaknesses

Fig. 6 allows us to determine the percentage of false positives, which is a good

measure of the quality of the checks. To define false positives, the NIST experts

determined two categories of weaknesses: Security and Quality ones are Good weak-

nesses in the sense that identify real issues; the other category contains the Insignif-

icant and False weaknesses that are Bad as they correspond to false positives or

trivial issues. Fig. 6 shows the ratio Good/Bad for each tool. Goanna performs the

very well with less than 40% false positives.

6 No general conclusion about the tools can de drawn as this experiment concerns on project Dovecot.
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5 Integration

All these results are great, but ease-of-use is also vitally important to success in

industry. Here we comment briefly on our experience with integrating Goanna into

industrial environments and systems.

Most important for industrial tool adoption is a seamless integration into existing

development processes, as process changes are often hard to achieve and costly to

implement. Therefore, a successful uptake of static analysis tools requires easy

integration into the SDLC.

Early static analysis tools for C/C++ required a complex setup procedure: the

location of header files needed to be defined explicitly, compiler configurations had

to be meticulously set up, and analyzers were not integrated with standard IDEs.

Further, code annotations were sometimes required. All these steps can be serious

hurdles and hard to maintain in the long-term.

Modern static analysis tools overcome this in various ways: they can either

record the build process and play it back to the analysis tool later, or directly inte-

grate just like a compiler into Makefiles and the like. Our Goanna tool is available

as both an IDE and server-targeted (command line) version. The IDE variant of

Goanna integrates with Eclipse as well as Microsoft Visual Studio (2005, 2008, 2010

& 11 beta). These variants can be installed via a “click-through” installer. The

setup and configuration is done completely by familiar check boxes in the IDE. The

command line variant can be used exactly like a compiler, e.g. instead of calling

the compiler gcc the developer calls our analysis tool goannacc. The tool itself

will automatically identify includes, compiler switches and so on. Moreover, a fine-

grained setup can be achieved through command line options or text configuration

files. As a result, for either variant of Goanna there are minimal changes in the

software development process and in most cases the software developer never has

to switch windows between his normal environment and the analysis tool.
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6 Summary and Future Directions

In this work we presented our practical results from using automated formal meth-

ods, in particular model checking, for static bug detection of industrial software.

An important contribution is the empirical demonstration that our model checking

approach to static analysis scales roughly linearly to millions of lines of C/C++

code. Moreover, we have shown that our Goanna tool is able to detect previously

unknown and relevant safety and security flaws automatically in large C/C++ code

bases.

To some extend it might be surprising that model checking technology can indeed

scale close to linearly for real-life C/C++ software, given that the state explosion

problem is one of the most common phenomena associated with model checking.

However, there are three significant explanations for this. Firstly, the core issue of

state explosion typically comes from having concurrent systems with an inevitable

exponential number of executions. We are, however, considering sequential C/C++

code. Secondly, CTL model checking itself has a worst-case complexity that is linear

in the size of the model and linear in the size of the CTL formula. Hence, our results

are perfectly in line with this. Thirdly, our abstractions are on such a level, where

they create very manageable state spaces. This is particularly true for our summary

based inter-procedural approach.

Future work is to push the envelope further. This means, we endeavor to succes-

sively add more formal verification techniques such as SMT solving and automated

theorem proving to create an even more fine-grained analysis without overly com-

promising performance. Some early results in that direction can be found in [10].

Moreover, we see another important challenge in addressing real concurrency issues

resulting from multi-threaded code.
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