The Dark Side of Timed Opacity

Franck Cassez http://www.irccyn.fr/franck

National ICT Australia & CNRS

Work supported by a Marie Curie International Outgoing Fellowship

7th European Community Framework Programme

ISA 2009, Seoul, Korea June 25th, 2009

Context

- Need for Security in Transactional Systems
 - Web-services: e-banking, online transactions
 - ▶ id documents: biometric passport, Medicare Card
 - e-voting systems
- Different Types of Security
 - Integrity: illegal actions cannot be performed by an unauthorized user

Bank account management cannot be managed by a third party

- Availability: some actions must be available Withdrawing money from your bank account
- Privacy: information should remain hidden from some users PIN code

introduced in [Mazaré (WITS'2004), Bryans et al. (FAST'2005)]

Context

- Need for Security in Transactional Systems
 - Web-services: e-banking, online transactions
 - ▶ id documents: biometric passport, Medicare Card
 - e-voting systems
- Different Types of Security
 - Integrity: illegal actions cannot be performed by an unauthorized user

Bank account management cannot be managed by a third party

- Availability: some actions must be available Withdrawing money from your bank account
- Privacy: information should remain hidden from some users PIN code

In this paper: Opacity

introduced in [Mazaré (WITS'2004), Bryans et al. (FAST'2005)]

Context

- Need for Security in Transactional Systems
 - Web-services: e-banking, online transactions
 - ▶ id documents: biometric passport, Medicare Card
 - e-voting systems
- Different Types of Security
 - Integrity: illegal actions cannot be performed by an unauthorized user

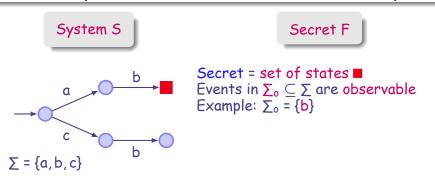
Bank account management cannot be managed by a third party

- Availability: some actions must be available Withdrawing money from your bank account
- Privacy: information should remain hidden from some users PIN code

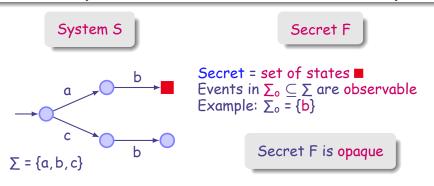
In this paper: Opacity

introduced in [Mazaré (WITS'2004), Bryans et al. (FAST'2005)]

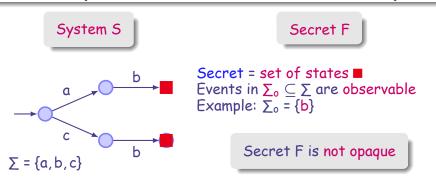
Formal Specification and Verification of Opacity



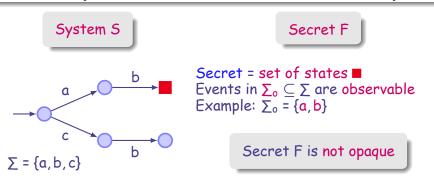
Formal Specification and Verification of Opacity



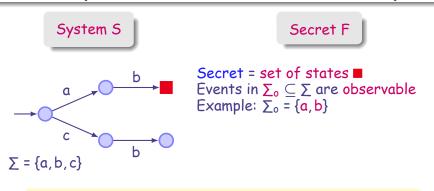
Formal Specification and Verification of Opacity



Formal Specification and Verification of Opacity

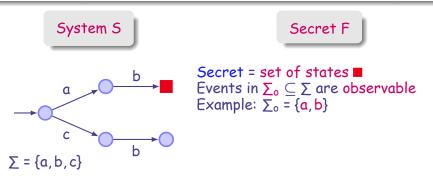


Formal Specification and Verification of Opacity



Opacity Verification Problem: Is F opaque wrt (S, Σ_o) ?

Formal Specification and Verification of Opacity



Opacity Verification Problem: Is F opaque wrt (S, Σ_0) ?

To check opacity: use your favorite Formal Method:

- Model-checking
- Theorem proving
- Tools to support automatic analysis of systems

The Dark Side of Timed Opacity

Results for Checking Opacity of Finite Systems

Inputs:

- S is finite automaton over alphabet Σ
- $\Sigma_0 \subseteq \Sigma$, set of observable events
- a secret F, given by a subset of the set of states of S

Theorem ([Cassez et al. (ATVA'09)])

Checking wether F is opaque wrt (S, Σ_0) is PSPACE-complete.

What if an external observer can measure time?

Results for Checking Opacity of Finite Systems

Inputs:

- S is finite automaton over alphabet Σ
- $\Sigma_0 \subseteq \Sigma$, set of observable events
- a secret F, given by a subset of the set of states of S

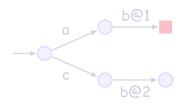
Theorem ([Cassez et al. (ATVA'09)])

Checking wether F is opaque wrt (S, Σ_0) is PSPACE-complete.

What if an external observer can measure time?

Inputs:

- S is timed automaton over alphabet Σ
- $\Sigma_0 \subseteq \Sigma$, set of observable events
- a secret F, given by a subset of the set of S

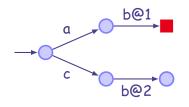


Secret = ■ b observable + time

System is not opaque

Inputs:

- S is timed automaton over alphabet Σ
- $\Sigma_0 \subseteq \Sigma$, set of observable events
- a secret F, given by a subset of the set of S

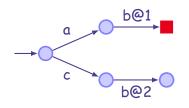


Secret = ■ b observable + time

System is not opaque

Inputs:

- S is timed automaton over alphabet Σ
- $\Sigma_0 \subseteq \Sigma$, set of observable events
- a secret F, given by a subset of the set of S

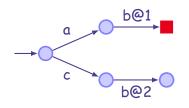


Secret = ■ b observable + time

System is not opaque

Inputs:

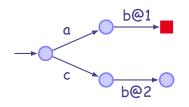
- S is timed automaton over alphabet Σ
- $\Sigma_0 \subseteq \Sigma$, set of observable events
- a secret F, given by a subset of the set of S



System is not opaque

Inputs:

- S is timed automaton over alphabet Σ
- $\Sigma_0 \subseteq \Sigma$, set of observable events
- a secret F, given by a subset of the set of S



Secret = ■ b observable + time

System is not opaque

Outline of the Talk

- Modelling Timed Systems
 - Timed Words and Languages
 - Timed Automata
 - Verification of Timed Automata
- Timed Opacity
 - Timed Opacity Problem
 - Timed Opacity is Undecidable for TA
- Conclusion

Timed Words and Languages

- A finite timed word over \sum is a word in $(\sum \times \mathbb{R}_{\geq 0})^*$ (a, 1)(c, 2.34)(a, 2.986)(b, 3.146)(c, 4.16)
- $TW^*(\Sigma)$ = set of timed words over Σ
- Operations on timed words
 - untiming: Unt(a,1)(c,2.34)(a,2.986)(b,3.146)(c,4.16) = a.c.a.b.c
 - ► Projection: $\pi_{\{a,b\}}((a,1)(c,2.34)(a,2.986)(b,3.146)(c,4.16)) = (a,1)(a,2.986)(b,3.146)$
 - ▶ Inverse Projection: $\pi_{\Sigma}^{-1}(w) = \{w' \in TW^*(\Sigma) \mid \pi_{\Sigma'}(w') = w\}$
- A timed language is a set of timed words
- Operations on timed words extend to timed languages

Timed Words and Languages

- A finite timed word over \sum is a word in $(\sum \times \mathbb{R}_{\geq 0})^*$ (a,1)(c,2.34)(a,2.986)(b,3.146)(c,4.16)
- $TW^*(\Sigma)$ = set of timed words over Σ
- Operations on timed words
 - untiming: Unt(a, 1)(c, 2.34)(a, 2.986)(b, 3.146)(c, 4.16) = a.c.a.b.c
 - ► Projection: $\pi_{\{a,b\}}((a,1)(c,2.34)(a,2.986)(b,3.146)(c,4.16)) = (a,1)(a,2.986)(b,3.146)$
 - ► Inverse Projection: $\pi_{\Sigma}^{-1}(w) = \{w' \in TW^*(\Sigma) \mid \pi_{\Sigma'}(w') = w\}$
- A timed language is a set of timed words

Operations on timed words extend to timed languages

Timed Words and Languages

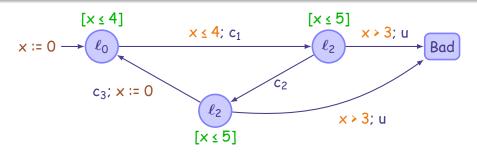
- A finite timed word over \sum is a word in $(\sum \times \mathbb{R}_{\geq 0})^*$ (a,1)(c,2.34)(a,2.986)(b,3.146)(c,4.16)
- $TW^*(\Sigma)$ = set of timed words over Σ
- Operations on timed words
 - untiming: Unt(a, 1)(c, 2.34)(a, 2.986)(b, 3.146)(c, 4.16) = a.c.a.b.c
 - ► Projection: $\pi_{\{a,b\}}((a,1)(c,2.34)(a,2.986)(b,3.146)(c,4.16)) = (a,1)(a,2.986)(b,3.146)$
 - ► Inverse Projection: $\pi_{\Sigma}^{-1}(w) = \{w' \in TW^*(\Sigma) \mid \pi_{\Sigma'}(w') = w\}$
- A timed language is a set of timed words

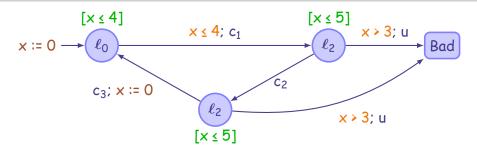
Operations on timed words extend to timed languages

Timed Automata

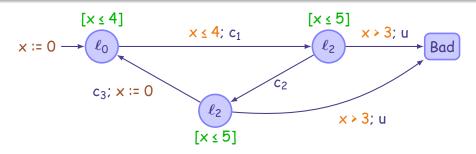
- Timed Automaton = Finite Automaton + clock variables All clocks evolve at the same speed
- Clocks take their values in a dense-time domain
- Transitions are guarded by clocks constraints

- ► g: guard of the form g ::= $x \sim c \mid g \land g$ where x is a clock and $c \in \mathbb{N}$, $\sim \in \{<, \leq, =, \geq, >\}$
- R : the set of clocks to be reset when firing the transition
- $Inv(\ell)$ is an invariant to ensure (some sort of) liveness

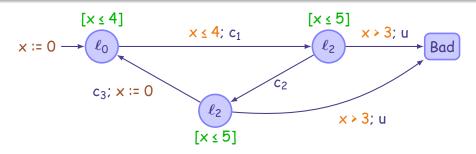


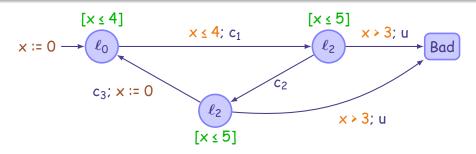


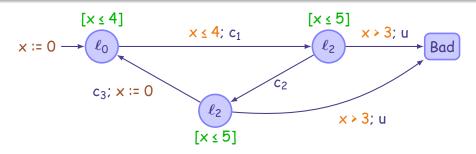
Runs = alternating sequence of discrete and time steps $\rho_1 : (\ell_0, 0) \xrightarrow{1.55} (\ell_0, 1.55) \xrightarrow{c_1} (\ell_1, 1.55) \xrightarrow{1.67} (\ell_1, 3.22) \xrightarrow{u} (Bad, 3.22)$ $\rho_2 : (\ell_0, 0) \xrightarrow{11} (\ell_0, 1.1) \xrightarrow{c_1} (\ell_1, 1.1) \xrightarrow{2.1} (\ell_1, 3.2) \xrightarrow{c_2} (\ell_2, 3.2)$ $\xrightarrow{01} (\ell_2, 3.3) \xrightarrow{c_3} (\ell_0, 0) \cdots \cdots$ $\rho_3 : (\ell_0, 0) \xrightarrow{c_1 c_2 c_3 \text{ in } \frac{1}{2}} (\ell_0, 0) \xrightarrow{c_1 c_2 c_3 \text{ in } \frac{1}{3}} \cdots$

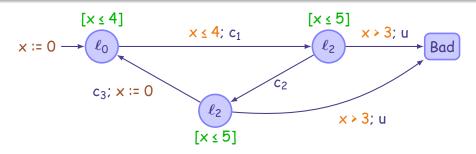


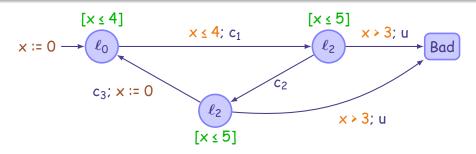
 $\begin{array}{l} \text{Runs} = \text{alternating sequence of discrete and time steps} \\ \rho_{1}: \quad (\ell_{0},0) \xrightarrow{1.55} (\ell_{0},1.55) \xrightarrow{c_{1}} (\ell_{1},1.55) \xrightarrow{1.67} (\ell_{1},3.22) \xrightarrow{u} (\text{Bad},3.22) \\ \rho_{2}: \quad (\ell_{0},0) \xrightarrow{1.1} (\ell_{0},1.1) \xrightarrow{c_{1}} (\ell_{1},1.1) \xrightarrow{2.1} (\ell_{1},3.2) \xrightarrow{c_{2}} (\ell_{2},3.2) \\ & & & \\ & & & \\ & & & \\ \rho_{3}: \quad (\ell_{0},0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{2}} (\ell_{0},0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{4}} (\ell_{0},0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{8}} \cdots \end{array}$

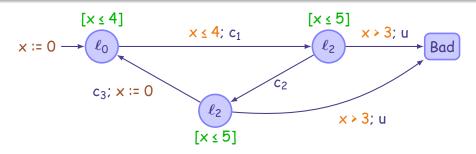


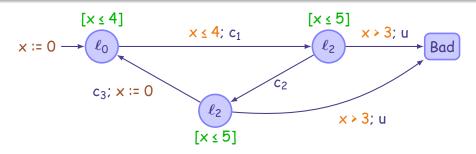


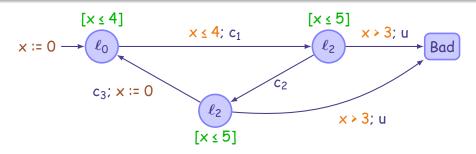


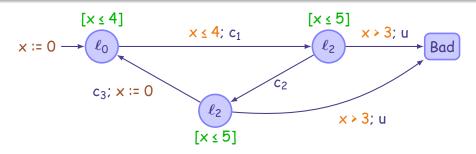




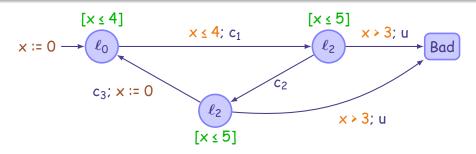




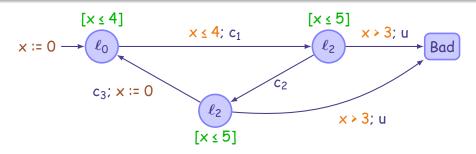




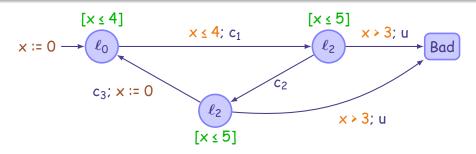
 $\begin{array}{l} \text{Runs} = \text{alternating sequence of discrete and time steps} \\ \rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{1.55} (\ell_{0}, 1.55) \xrightarrow{c_{1}} (\ell_{1}, 1.55) \xrightarrow{1.67} (\ell_{1}, 3.22) \xrightarrow{u} (\text{Bad}, 3.22) \\ \rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{1.1} (\ell_{0}, 1.1) \xrightarrow{c_{1}} (\ell_{1}, 1.1) \xrightarrow{2.1} (\ell_{1}, 3.2) \xrightarrow{c_{2}} (\ell_{2}, 3.2) \\ & \xrightarrow{0.1} (\ell_{2}, 3.3) \xrightarrow{c_{3}} (\ell_{0}, 0) & \cdots \cdots \\ \rho_{3}: \quad (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{2}} (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{4}} (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{8}} \cdots \end{array}$



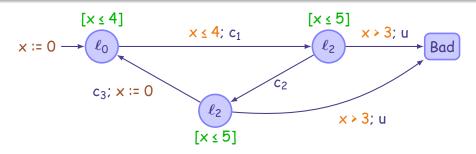
 $\begin{array}{l} \text{Runs} = \text{alternating sequence of discrete and time steps} \\ \rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{1.55} (\ell_{0}, 1.55) \xrightarrow{c_{1}} (\ell_{1}, 1.55) \xrightarrow{1.67} (\ell_{1}, 3.22) \xrightarrow{u} (\text{Bad}, 3.22) \\ \rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{1.1} (\ell_{0}, 1.1) \xrightarrow{c_{1}} (\ell_{1}, 1.1) \xrightarrow{2.1} (\ell_{1}, 3.2) \xrightarrow{c_{2}} (\ell_{2}, 3.2) \\ & \xrightarrow{0.1} (\ell_{2}, 3.3) \xrightarrow{c_{3}} (\ell_{0}, 0) & \cdots \cdots \\ \rho_{3}: \quad (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{2}} (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{8}} \cdots \end{array}$



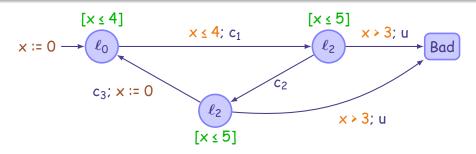
Modelling Timed Systems Timed Automata Example 1: Timed Automaton



Modelling Timed Systems Timed Automata Example 1: Timed Automaton

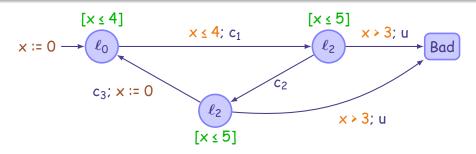


Example 1: Timed Automaton



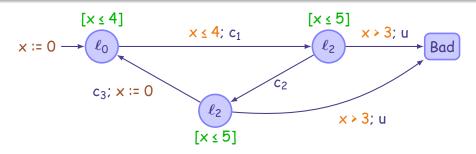
 $\begin{array}{l} \text{Runs} = \text{alternating sequence of discrete and time steps} \\ \rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{1.55} (\ell_{0}, 1.55) \xrightarrow{c_{1}} (\ell_{1}, 1.55) \xrightarrow{1.67} (\ell_{1}, 3.22) \xrightarrow{u} (\text{Bad}, 3.22) \\ \rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{1.1} (\ell_{0}, 1.1) \xrightarrow{c_{1}} (\ell_{1}, 1.1) \xrightarrow{2.1} (\ell_{1}, 3.2) \xrightarrow{c_{2}} (\ell_{2}, 3.2) \\ & \xrightarrow{0.1} (\ell_{2}, 3.3) \xrightarrow{c_{3}} (\ell_{0}, 0) & \cdots \cdots \\ \rho_{3}: \quad (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{2}} (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{8}} \cdots \end{array}$

Example 1: Timed Automaton



 $\begin{array}{l} \text{Runs} = \text{alternating sequence of discrete and time steps} \\ \rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{1.55} (\ell_{0}, 1.55) \xrightarrow{c_{1}} (\ell_{1}, 1.55) \xrightarrow{1.67} (\ell_{1}, 3.22) \xrightarrow{u} (\text{Bad}, 3.22) \\ \rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{1.1} (\ell_{0}, 1.1) \xrightarrow{c_{1}} (\ell_{1}, 1.1) \xrightarrow{2.1} (\ell_{1}, 3.2) \xrightarrow{c_{2}} (\ell_{2}, 3.2) \\ & \xrightarrow{0.1} (\ell_{2}, 3.3) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots \cdots \cdots \\ \rho_{3}: \quad (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{2}} (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{4}} (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{8}} \cdots \end{array}$

Example 1: Timed Automaton



 $\begin{array}{l} \text{Runs} = \text{alternating sequence of discrete and time steps} \\ \rho_{1}: \quad (\ell_{0}, 0) \xrightarrow{1.55} (\ell_{0}, 1.55) \xrightarrow{c_{1}} (\ell_{1}, 1.55) \xrightarrow{1.67} (\ell_{1}, 3.22) \xrightarrow{u} (\text{Bad}, 3.22) \\ \rho_{2}: \quad (\ell_{0}, 0) \xrightarrow{1.1} (\ell_{0}, 1.1) \xrightarrow{c_{1}} (\ell_{1}, 1.1) \xrightarrow{2.1} (\ell_{1}, 3.2) \xrightarrow{c_{2}} (\ell_{2}, 3.2) \\ & \xrightarrow{0.1} (\ell_{2}, 3.3) \xrightarrow{c_{3}} (\ell_{0}, 0) \cdots \cdots \cdots \\ \rho_{3}: \quad (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{2}} (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{4}} (\ell_{0}, 0) \xrightarrow{c_{1}c_{2}c_{3} \text{ in } \frac{1}{8}} \cdots \end{array}$

A Timed Automaton A is a tuple (L, ℓ_0 , X, Σ_{τ} , E, F) $\Sigma_{\tau} = \Sigma \cup \{\tau\}, \tau = invisible/silent$ F = subset of L, accepting locations

A run ρ of A is a sequence of the form:

$$\varrho = (\ell_0, \mathsf{v}_0) \xrightarrow{\delta_0} (\ell_0, \mathsf{v}_0 + \delta_0) \xrightarrow{a_0} (\ell_1, \mathsf{v}_1) \cdots \\ \cdots \xrightarrow{a_{n-1}} (\ell_n, \mathsf{v}_n) \xrightarrow{\delta_n} (\ell_n, \mathsf{v}_n + \delta_n)$$

 $tr(\rho)$ is the trace of ρ which is the timed word

$$\pi_{\Sigma}((a_0,t_0)(a_1,t_1)\cdots(a_n,t_n)) \text{ with } t_i = \sum_{k=0}^i \delta_k$$

 $Tr(A) = set of traces of words generated by A w is accepted by A if w = <math>tr(\varrho)$ with $last(\varrho) \in F$ $\mathcal{L}(A) \subseteq Tr(A)$ is the set timed words accepted by A.

A Timed Automaton A is a tuple (L, ℓ_0 , X, Σ_{τ} , E, F) $\Sigma_{\tau} = \Sigma \cup \{\tau\}, \tau = invisible/silent$ F = subset of L, accepting locations

A run ρ of A is a sequence of the form:

$$\varrho = (\ell_0, \mathsf{v}_0) \xrightarrow{\delta_0} (\ell_0, \mathsf{v}_0 + \delta_0) \xrightarrow{a_0} (\ell_1, \mathsf{v}_1) \cdots \\ \cdots \xrightarrow{a_{n-1}} (\ell_n, \mathsf{v}_n) \xrightarrow{\delta_n} (\ell_n, \mathsf{v}_n + \delta_n)$$

 $tr(\varrho)$ is the trace of ϱ which is the timed word

$$\pi_{\Sigma}((a_0, t_0)(a_1, t_1) \cdots (a_n, t_n)) \text{ with } t_i = \sum_{k=0}^i \delta_k$$

 $Tr(A) = set of traces of words generated by A w is accepted by A if w = <math>tr(\varrho)$ with $last(\varrho) \in F$ $\mathcal{L}(A) \subseteq Tr(A)$ is the set timed words accepted by A.

A Timed Automaton A is a tuple (L, ℓ_0 , X, Σ_{τ} , E, F) $\Sigma_{\tau} = \Sigma \cup \{\tau\}, \tau = invisible/silent$ F = subset of L, accepting locations

A run ρ of A is a sequence of the form:

$$\varrho = (\ell_0, \mathsf{v}_0) \xrightarrow{\delta_0} (\ell_0, \mathsf{v}_0 + \delta_0) \xrightarrow{a_0} (\ell_1, \mathsf{v}_1) \cdots \\ \cdots \xrightarrow{a_{n-1}} (\ell_n, \mathsf{v}_n) \xrightarrow{\delta_n} (\ell_n, \mathsf{v}_n + \delta_n)$$

 $tr(\varrho)$ is the trace of ϱ which is the timed word

$$\pi_{\Sigma}((a_0, t_0)(a_1, t_1) \cdots (a_n, t_n)) \text{ with } t_i = \sum_{k=0}^i \delta_k$$

Tr(A) = set of traces of words generated by A w is accepted by A if w = $tr(\varrho)$ with $last(\varrho) \in F$ $\mathcal{L}(A) \subseteq Tr(A)$ is the set timed words accepted by A.

A Timed Automaton A is a tuple (L, ℓ_0 , X, Σ_{τ} , E, F) $\Sigma_{\tau} = \Sigma \cup \{\tau\}, \tau = invisible/silent$ F = subset of L, accepting locations

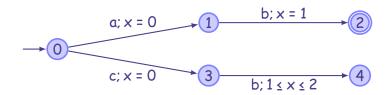
A run ρ of A is a sequence of the form:

$$\varrho = (\ell_0, \mathsf{v}_0) \xrightarrow{\delta_0} (\ell_0, \mathsf{v}_0 + \delta_0) \xrightarrow{a_0} (\ell_1, \mathsf{v}_1) \cdots \\ \cdots \xrightarrow{a_{n-1}} (\ell_n, \mathsf{v}_n) \xrightarrow{\delta_n} (\ell_n, \mathsf{v}_n + \delta_n)$$

 $tr(\varrho)$ is the trace of ϱ which is the timed word

$$\pi_{\Sigma}((a_0, t_0)(a_1, t_1) \cdots (a_n, t_n)) \text{ with } t_i = \sum_{k=0}^i \delta_k$$

Tr(A) = set of traces of words generated by A w is accepted by A if w = $tr(\varrho)$ with $last(\varrho) \in F$ $\mathcal{L}(A) \subseteq Tr(A)$ is the set timed words accepted by A. Timed Language Accepted by a TA (Example 2)



 \mathcal{B} can generate the following runs: for $\delta_1 \ge 0$ and $1 \le \delta_2 \le 2$

$$(0, x = 0) \xrightarrow{a} (1, x = 0) \xrightarrow{1} (1, x = 1) \xrightarrow{b} (2, x = 1) \xrightarrow{\delta_1} (2, x = 1 + \delta_1)$$

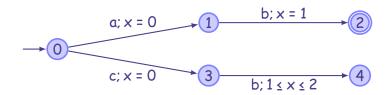
and

$$(0, x = 0) \xrightarrow{c} (3, x = 0) \xrightarrow{\delta_2} (3, x = \delta_2 2) \xrightarrow{b} (4, x = \delta_2) \xrightarrow{\delta_1} (4, x = \delta_2 + \delta_1)$$

$$Tr(\mathcal{B}) = \{(a, 0)(b, 1), (c, 0)(b, \dagger), 1 \le t \le 2\}$$

$$\mathcal{L}(\mathcal{B}) = \{(a, 0)(b, 1)\}$$

Timed Language Accepted by a TA (Example 2)



 \mathcal{B} can generate the following runs: for $\delta_1 \ge 0$ and $1 \le \delta_2 \le 2$

$$(0, x = 0) \xrightarrow{a} (1, x = 0) \xrightarrow{1} (1, x = 1) \xrightarrow{b} (2, x = 1) \xrightarrow{\delta_1} (2, x = 1 + \delta_1)$$

and

$$(0, x = 0) \xrightarrow{c} (3, x = 0) \xrightarrow{\delta_2} (3, x = \delta_2 2) \xrightarrow{b} (4, x = \delta_2) \xrightarrow{\delta_1} (4, x = \delta_2 + \delta_1)$$

$$Tr(\mathcal{B}) = \{(a, 0)(b, 1), (c, 0)(b, \dagger), 1 \le t \le 2\}$$

$$\mathcal{L}(\mathcal{B}) = \{(a, 0)(b, 1)\}$$

 Modelling Timed Systems
 Verification of Timed Automata

 Verification of Timed Automata
 [Alur and Dill (TCS 94)]

- Timed Automata generate Timed Languages a timed word: (a, 1.2)(b, 4.567)(a, 6)...
- Emptiness Problem: Is the language accepted by a TA empty ? reachability properties, Büchi-like properties
- Universal Problem: Does a TA accept all timed words ?

Decidability Result

[Alur and Dill (TCS 94)]

Emptiness Problem for TA is PSPACE-Complete. Build a finite time-bisimilar abstraction: region automaton

Undecidability/Non Closure Results [Alur and Dill (TCS 94)]

- Universal Problem for TA is undecidable implies that Inclusion Problem is undecidable
- TA are not determinizable nor complementable

 Modelling Timed Systems
 Verification of Timed Automata

 Verification of Timed Automata
 [Alur and Dill (TCS 94)]

- Timed Automata generate Timed Languages a timed word: (a, 1.2)(b, 4.567)(a, 6)...
- Emptiness Problem: Is the language accepted by a TA empty ? reachability properties, Büchi-like properties
- Universal Problem: Does a TA accept all timed words?

Decidability Result

[Alur and Dill (TCS 94)]

Emptiness Problem for TA is PSPACE-Complete. Build a finite time-bisimilar abstraction: region automaton

Undecidability/Non Closure Results [Alur and Dill (TCS 94)]

- Universal Problem for TA is undecidable implies that Inclusion Problem is undecidable
- TA are not determinizable nor complementable

 Modelling Timed Systems
 Verification of Timed Automata

 Verification of Timed Automata
 [Alur and Dill (TCS 94)]

- Timed Automata generate Timed Languages a timed word: (a, 1.2)(b, 4.567)(a, 6)...
- Emptiness Problem: Is the language accepted by a TA empty ? reachability properties, Büchi-like properties
- Universal Problem: Does a TA accept all timed words?

Decidability Result

[Alur and Dill (TCS 94)]

Emptiness Problem for TA is PSPACE-Complete. Build a finite time-bisimilar abstraction: region automaton

Undecidability/Non Closure Results [Alur and Dill (TCS 94)]

- Universal Problem for TA is undecidable implies that Inclusion Problem is undecidable
- ► TA are not determinizable nor complementable

Given: a timed automaton $A = (L, \ell_0, X, \Sigma_T, E, F)$ F = set of secret locations $\Sigma_0 \subseteq \Sigma$, the set of observable actions

- $\pi(Tr(A))$ = set of projections on Σ_0 of words generated by A • $w \in \pi(Tr(A))$
 - $[w] = \pi^{-1}(w) \cap Tr(A)$
 - last([w]) set of locations A can be in after observing w

Definition (Opacity)

The secret F is opaque with respect to A and $\Sigma_{\circ} \subseteq \Sigma$ iff for each $w \in \pi(Tr(A))$, $last([w]) \not\subseteq F$.

Opacity Verification Problem for timed automata:

Check wether F is opaque w.r.t. (A, Σ_0) .

- Given: a timed automaton $A = (L, \ell_0, X, \Sigma_T, E, F)$ F = set of secret locations $\Sigma_o \subseteq \Sigma$, the set of observable actions
 - $\pi(Tr(A))$ = set of projections on Σ_0 of words generated by A • $w \in \pi(Tr(A))$
 - $[w] = \pi^{-1}(w) \cap Tr(A)$
 - last([w]) set of locations A can be in after observing w

Definition (Opacity)

The secret F is opaque with respect to A and $\Sigma_o \subseteq \Sigma$ iff for each $w \in \pi(Tr(A))$, *last*([w]) \subseteq F.

Opacity Verification Problem for timed automata:

Check wether F is opaque w.r.t. (A, Σ_0) .

- Given: a timed automaton $A = (L, \ell_0, X, \Sigma_T, E, F)$ F = set of secret locations $\Sigma_o \subseteq \Sigma$, the set of observable actions
 - $\pi(Tr(A))$ = set of projections on Σ_0 of words generated by A • $w \in \pi(Tr(A))$
 - $[w] = \pi^{-1}(w) \cap Tr(A)$
 - last([w]) set of locations A can be in after observing w

Definition (Opacity)

The secret F is opaque with respect to A and $\Sigma_{\circ} \subseteq \Sigma$ iff for each $w \in \pi(Tr(A))$, *last*([w]) $\not\subseteq$ F.

Opacity Verification Problem for timed automata:

Check wether F is opaque w.r.t. (A, Σ_0) .

The Dark Side of Timed Opacity

- Given: a timed automaton $A = (L, \ell_0, X, \Sigma_T, E, F)$ F = set of secret locations $\Sigma_o \subseteq \Sigma$, the set of observable actions
 - $\pi(Tr(A))$ = set of projections on Σ_0 of words generated by A • $w \in \pi(Tr(A))$
 - $[w] = \pi^{-1}(w) \cap Tr(A)$
 - last([w]) set of locations A can be in after observing w

Definition (Opacity)

The secret F is opaque with respect to A and $\Sigma_{\circ} \subseteq \Sigma$ iff for each $w \in \pi(Tr(A))$, *last*([w]) $\not\subseteq$ F.

Opacity Verification Problem for timed automata:

Check we ther F is opaque w.r.t. (A, \sum_{o}) .

Timed Opacity Timed Opacity is Undecidable for TA Results: Undecidability of Timed Opacity

Theorem

The opacity problem is undecidable for TA.

The proof is by reduction of the universality problem to the opacity problem.

Simpler Classes of Timed Automata

- Deterministic: no silent action and next state determined by (time,action)
- Event-Recording: deterministic, clocks are associated with actions [Alur et al. (CAV'94)]

Theorem

The opacity problem is undecidable for Event-Recording TA.

Results: Undecidability of Timed Opacity SUndecidable for TA

Theorem

The opacity problem is undecidable for TA.

The proof is by reduction of the universality problem to the opacity problem.

Simpler Classes of Timed Automata

- Deterministic: no silent action and next state determined by (time,action)
- Event-Recording: deterministic, clocks are associated with actions [Alur et al. (CAV'94)]

Theorem

The opacity problem is undecidable for Event-Recording TA.

Opacity + Dense-Time

- Checking Opacity is undecidable for TA
- Undecidability holds for simple timed systems like ERA
- Undecidability holds for time Petri Nets Timed automata and time Petri nets are equally expressive [Cassez and Roux (JSS 2006)]

Opacity + Discrete time Decidable but expensive

- A clock is a timed automaton (dense-time)
- Clock issues tick events
- External observer can only see $\sum_{o} \cup \{\text{tick}\}$
- Opacity with digital clocks is decidable in EXPTIME

Opacity + Dense-Time

- Checking Opacity is undecidable for TA
- Undecidability holds for simple timed systems like ERA
- Undecidability holds for time Petri Nets Timed automata and time Petri nets are equally expressive [Cassez and Roux (JSS 2006)]
- Opacity + Discrete time
 - Decidable but expensive

- A clock is a timed automaton (dense-time)
- Clock issues tick events
- External observer can only see $\sum_{o} \cup \{\text{tick}\}$
- Opacity with digital clocks is decidable in EXPTIME

Opacity + Dense-Time

- Checking Opacity is undecidable for TA
- Undecidability holds for simple timed systems like ERA
- Undecidability holds for time Petri Nets Timed automata and time Petri nets are equally expressive [Cassez and Roux (JSS 2006)]
- Opacity + Discrete time
 - Decidable but expensive

- A clock is a timed automaton (dense-time)
- Clock issues tick events
- External observer can only see $\sum_{o} \cup \{\text{tick}\}$
- Opacity with digital clocks is decidable in EXPTIME

Opacity + Dense-Time

- Checking Opacity is undecidable for TA
- Undecidability holds for simple timed systems like ERA
- Undecidability holds for time Petri Nets Timed automata and time Petri nets are equally expressive [Cassez and Roux (JSS 2006)]
- Opacity + Discrete time
 - Decidable but expensive

- A clock is a timed automaton (dense-time)
- Clock issues tick events
- External observer can only see $\sum_{o} \cup \{\text{tick}\}$
- Opacity with digital clocks is decidable in EXPTIME

References

References

- [Mazaré (WITS'2004)] Mazaré, L.:
 - Using unification for opacity properties.

In: Proceedings of the 4th IFIP WG1.7 Workshop on Issues in the Theory of Security (WITS'04), Barcelona (Spain) (2004) 165–176

[Bryans et al. (FAST'2005)] Bryans, J., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to transition systems. In Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S.A., eds.: Formal Aspects in Security and Trust. Volume 3866 of Lecture Notes in Computer Science., Springer (2005) 81–95

[Alur and Dill (TCS 94)] Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science (TCS) 126(2) (1994) 183-235

[Alur et al. (CAV'94)] Alur, R., Fix, L., Henzinger, T.A.: Event clock automata: A determinizable class of timed automata. In: Proc. 6th International Conference on Computer Aided Verification (CAV'94). Volume 818 of Lecture Notes in Computer Science., Springer (1994) 1-13

[Cassez and Roux (JSS 2006)] Cassez, F., Roux, O.H.: Structural translation from time petri nets to timed automata. Journal of Software and Systems 79(10) (2006) 1456-1468

[Cassez and Tripakis (FI 2008)] Cassez, F., Tripakis, S.: Fault diagnosis with static or dynamic diagnosers. Fundamenta Informatica 88(4) (November 2008) 497-540.

[Cassez et al. (ATVA'09)] Cassez, F., Dubreil, J. and Marchand, H.: Dynamic Observers for the Synthesis of Opaque Systems. In: Proc. 7th International Symposium on Automated Technology for Verification and Analysis (ATVA'09). LNCS, Forthcoming.