A Note on Fault Diagnosis Algorithms

Franck Cassez

National ICT Australia & CNRS Sydney, Australia

> December 18th, 2009 CDC'09, Shanghai, China

Fault Diagnosis for Discrete Event Systems

Given:

- A finite automaton A over $\Sigma^{\epsilon,f} = \Sigma \cup {\epsilon, f}$
- f is the fault action, Σ is the set of observable events Define:
 - Faulty_{$\geq k$}(A): k-faulty runs that contain f followed by $\geq k$ actions
 - NonFaulty(A): Non faulty runs that contain no f
- Purpose of fault diagnosis: given k, and observable events $\boldsymbol{\Sigma}$
 - never raise an alarm on non-faulty runs
 - always raise an alarm on k-faulty runs

Fault Diagnosis for Dense-Time Systems

Given:

• A timed automaton with continuous variables A over $\Sigma^{\epsilon,f} = \Sigma \cup {\epsilon, f}$

• f is the fault action, Σ is the set of observable events

Define:

- Faulty₂₀(A): Δ -faulty runs that contain f followed by $\geq \Delta$ time units
- NonFaulty(A): Non faulty runs (contain no f)
- Purpose of fault diagnosis: given $\Delta,$ and observable events Σ
 - never raise an alarm on non-faulty runs
 - always raise an alarm on Δ -faulty runs

Diagnosability Problem

 $\begin{array}{l} \mbox{trace}(\rho) = \mbox{trace} \ \mbox{of the run } \rho \ (a \ \mbox{word in} \ (\Sigma \cup \{\epsilon, f\})^*) \\ \pi_{/\Sigma}(\mbox{trace}(\rho)) = \mbox{projection of the trace on observable events} \end{array}$

Definition (k-diagnoser)

A mapping $D: \Sigma^* \rightarrow \{0,1\}$ is a k-diagnoser for A if:

- for each run $\rho \in NonFaulty(A)$, $D(\pi_{\Sigma}(trace(\rho))) = 0$;
- for each run $\rho \in \textbf{Faulty}_{\geq k}(A)$, $D(\pi_{\Sigma}(\text{trace}(\rho))) = 1$.

k-Diagnosability Problem

Given A and $k \in \mathbb{N}$, is there a k-diagnoser for A?

Diagnosability Problem

Given A, is there a $k \in \mathbb{N}$ s.t. A is k-diagnosable ?

Dense-time version defined using timed words, and timed languages

Algorithms for Checking Diagnosability

Necessary and Sufficient Condition for Diagnosability A is not diagnosable $\iff \forall k \in \mathbb{N}^*$, A is not k-diagnosable

Results for discrete event and dense-time systems

Diagnosability reduces to checking Büchi emptiness

Diagnosability reduces to bounded diagnosability (reachability)

Complexity

	∆-Diagnosability	Diagnosability	
	Reachability Algorithm	Büchi Emptiness	Reachability
DES	PTIME	PTIME	PTIME
	O(A ⁴)	O(A ²)	O(A ⁴)
TA	PSPACE-C.	PSPACE-C.	PSPACE-C.
		O(A ²)	O(A ⁴)

Consequences & Applications

- Easy proofs of existing results [Sampath et al., 95, Jiang et al., 2001, Yoo et al., 2002]
- Shows that Büchi based algorithms are better
- Use of standard model-checking tools for the diagnosability problem
 - on-the-fly algorithms: SPIN, NuSMV
 - efficient tools for timed systems: UPPAAL
- Expressive languages for specifying systems

Selected References

[Jiang et al., 2001]	Shengbing Jiang, Zhongdong Huang, Vigyan Chandra, and Ratnesh Kumar. A polynomial algorithm for testing diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 46(8), August 2001.	
[Sampath et al., 95]	Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnamohideen, and Demosthenis C. Teneketzis. Diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 40(9), September 1995.	
[Yoo et al., 2002]	Yoo, TS., Lafortune, S. Polynomial-Time Verification of Diagnosability of Partially-Observed Discrete-Event Systems, IEEE Transactions on Automatic Control, 47(9), September 2002, 1491-1495.	