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Abstract

A Satisfiability Modulo Theory (SMT) solver is a program
that implements algorithms to automatically determinewhet-
her a logical formula is satisfiable. The performance of SMT
solvers has dramatically increased in the last decade and
for instance, many of the state-of-the-art software analysis
tools heavily rely on SMT solving to analyse source code.
We present ScalaSMT, a Scala library that leverages the
power of SMT solvers and makes SMT solving directly us-
able in Scala. ScalaSMT provides seamless access to numer-
ous popular SMT solvers like Z3, CVC4, Yices, MathSat or
SMTInterpol. Our library comes with a domain-specific lan-
guage to write terms and logical formulas for a wide range
of logical theories, thereby isolating users from the details
of particular solvers.
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1 Introduction

Satisfiability modulo theory (SMT) consists of determining
the satisfiability of logical formulas. It can reason in various
formal theories, e.g., in linear integer or real arithmetic, first-
order logic, or logics of arrays. An SMT solver is a program
that implements the corresponding algorithms to automati-
cally determine whether a logical formula is satisfiable. The
SMTLIB initiative1 provides a common input and output for-
mat based on S-expressions for interacting with SMT solvers.
We present ScalaSMT, a Scala library that provides an

1http://smtlib.cs.uiowa.edu
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abstraction over the SMTLIB format. The library brings con-
sistency and type safety to the textual and dynamically typed
world of SMTLIB solver interaction.

ScalaSMT relies on the SMTLIB input/output capabilities
of the solvers and consequently provides access to numerous
popular SMTLIB-compliant solvers such as Z3 [de Moura
and Bjørner 2008], CVC4 [Deters et al. 2014], Yices [Dutertre
2014],MathSat [Cimatti et al. 2013] or SMTInterpol [Christ
et al. 2012]. ScalaSMT is easily extendable (SMTLIB com-
mands and theories can be added) and configurable (SMTLIB-
compliant solvers can be added). ScalaSMT fills a gap in the
Scala library landscape by providing support for powerful
logical reasoning algorithms. ScalaSMT is open source and
available from https://bitbucket.org/franck44/scalasmt.

2 ScalaSMT Example Usage

In this section we introduce ScalaSMT using simple exam-
ples and discuss the advantages over SMTLIB.

2.1 Integer and Real Arithmetic

Assume you want to determine whether the logical formula
x + 1 ≤ y ∧ (y mod 4 = 3 ∧ y ≥ 2) is satisfiable (SAT in
the sequel). I.e., we want to know if we can assign integer
values to x and y, say v (x ),v (y) such that v (x ) + 1 ≤ v (y)
and v (y) mod 4 = 3 and v (y) ≥ 2.
1 (set-option :produce-models true)

2 ;; Set logic to Quantifier-Free Integer Arithmetic

3 (set-logic QF_LIA)

4 ;; Define the integer variables x and y

5 (declare-fun x () Int)

6 (declare-fun y () Int)

7 ;; Assert the formula x + 1 ≤ y
8 (assert (<= (+ x 1) y))

9 ;; Assert the formulas y mod 4 = 3 ∧ y ≥ 2
10 (assert (and (= (mod y 4) 3) (>= y 2)))

11 ;; Check SAT

12 (check-sat)

13 ;; returns sat

14 ;; Get values for x and y

15 (get-value (x y))

16 ;; returns ((x 2) (y 3))

Listing 1. Simple SAT query in SMTLIB

Checking whether such an assignment v exists is a typical
SAT query that can be answered by an SMT solver. Listing 1
shows how this example can be specified in the standard
SMTLIB format. Running an SMTLIB compliant solver on
Listing 1 will produce the result sat followed by a witness
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assignment that gives an instance of how the formulas are
satisfiable, in this case ((x 2) (y 3)).

With the domain-specific language (DSL) exposed by the
ScalaSMT library, the query above can be written as shown
in Listing 2 (we omit the import statements). Lines 1 and 2
define two objects of type Ints that corresponds to the
SMTLIB type Int of the theory of Quantifier-Free Linear
Integer Arithmetic QF_LIA. Lines 5 to 12 are in the scope of
the using method which is provided by ScalaSMT (line 4).
This method takes two arguments: a solver description (in
this example a process running Z3) and initialisation I (the-
ory set to QF_LIA and MODELS option to produce solution
models); and a function literal f that maps a solver to a
computation (isSat). The using method creates a solver s
configured with I and calls f (s ) to compute the result. The
solver only exists during the using call. When this method
terminates (line 13) andwe exit its scope, the process running
Z3 is killed.

The SAT test is at lines 6 to 9 and the result is matched in
lines 9 to 12 to decide if we can get a model (i.e., some values
for x andy). The values of the variables can be extracted from
amodelm by using the valueOfmethod (e.g., m.valueOf(x)).
Listing 3 shows another example in the theory of Non-

linear Real Arithmetic that uses flatMap to chain computa-
tions in a monadic manner. The method |= at line 7 asserts
a term on the solver stack, and the result is a Try that can
be forwarded to new computations (e.g., checkSat). Notice
that if a command (lines 7 to 9) returns a Failure, the next
command is not executed but the first Failure is the result
of the full chain of commands.

2.2 Interpolants

The previous example showed how to retrieve values when
an SMT query is SAT. It is also possible to retrieve predicates
from an SMT query when a logical formula is unsatisfiable
(UNSAT): they correspond to explanations for why the for-
mula is UNSAT.
The example of Listing 4 shows how to do this using the

getInterpolants method. Let P1 := x = z + 1 ∧ z ≥ 0 and
P2 := y ≥ x ∧ y < 1. Then P1 ∧ P2 is clearly UNSAT as
P1 implies x ≥ 1 but P2 implies x < 1. For some theories,
including Linear Integer Arithmetic, there is a predicate I ,
called an interpolant, such that the following conditions C1
and C2 are satisfied:2

C1: P1 =⇒ I , i.e., I is weaker (more general) then P1, and
C2: I ∧ P2 is still UNSAT, i.e., I is good enough to be

inconsistent with P2.
The use of interpolants is instrumental in many software
verification tools and we use it in our own static analyser
Skink [Cassez et al. 2017]. The example in Listing 4 shows
how to compute an interpolant, which in this case is I = x ≥
1, for P1 ∧ P2 and to check that indeed it is an interpolant
2Another condition is that I has only free variables from P1 and P2.

(i.e., satisfies C1 and C2). The interpolant is computed with
an interpolating solver (SMTInterpol) and checked with a
non-interpolating solver (CVC4) so this example illustrates
how easy it is to combine the powers of different solvers.

2.3 Supported Theories

ScalaSMT supports a large number of SMTLIB theories
including the common quantifier-free theories (QF_LIA, QF_-
LRA, QF_NRA, QF_UF), the theory of Arrays (QF_AUFLIA, QF_-
AUFLIRA), fixed-size (integer) bit-vectors (QF_BV), floating-
point bit-vectors (QF_FPBV) as well as theories with quanti-
fiers (e.g., AUFNIRA). An ecxample of usage of quantifiers is
available in the test directory of the ScalaSMT repository
https://bitbucket.org/franck44/scalasmt. Note that some the-
ories are not supported by all the solvers. This is reflected
in a configuration file that describes the capabilities of each
solver to the library.

2.4 Solver Configurations

Addition of new solvers in ScalaSMT is through a configu-
ration file and does not require modifying the Scala source
code. A typical SMTLIB2-compliant solver (e.g., MathSat)
is described as follows:

1 name = "MathSat"
2 executable = "mathsat"
3 version = "MathSAT5 v. 5.4.1"
4 args = []
5 timeout = 10 seconds
6 prompt1 = "(\\s)*\""
7 prompt2 = "\"(\\s)*( success)"
8 supportedLogics = [QF_UF , QF_LIA , QF_LRA ,

QF_AUFLIA , QF_BV , QF_ABV , QF_AUFLIRA]
9 supportedOptions = [PROOFS , MODELS]

The configuration comprises of the name of the executable
(can be a full path), the arguments to be passed to use the
solver in interactive mode, a default timeout for SMT-queries,
the sets of supported logics and options. The prompt* fields
are used to detect the end of a computation (see Section 3.2).
Note that the timeout is enforced i.e., if the solver does not
reply within the allocated time, the solver is killed. This is
not a feature of ScalaSMT but of the Expect package we
use to interact with the solvers (see Section 3.2).

2.5 Benefits of using ScalaSMT

Using a DSL for writing logical formulas has several ad-
vantages over writing them as S-expressions using standard
SMTLIB input/output:

• Operators can be overloaded, which provides a natural
way of expressing logical and formulas.
• A common error when writing SMTLIB specifications
is to omit the declare-fun command for some vari-
ables. The use of ScalaSMT naturally enforces decla-
rations prior to usage.

https://bitbucket.org/franck44/scalasmt
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1 val x = Ints("x") // Variables of type Int in SMTLIB , theory QF_LIA
2 val y = Ints("y")
3 val result : Try[ Model ] =
4 using( new SMTSolver( "Z3", new SMTInit( QF_LIA , List( MODELS ) ) ) ) {
5 implicit withSolver =>
6 isSat( // isSat returns a Try[ SatStatus ]
7 x + 1 <= y, // use overloaded operators +, ≤, ≥
8 y % 4 === 3 & y >= 2
9 ) match {
10 case Success( Sat() ) => getModel ()
11 case _ => Failure( new Exception( "failed" ) )
12 }
13 }

Listing 2. Example of Listing 1 using ScalaSMT

1 val b = Reals( "b" ) // Variables of type Real in SMTLIB , theory NRA
2 val c = Reals( "c" )
3 val model : Try[ Model ] =
4 using( new SMTSolver( "Z3", new SMTInit( QF_NRA , List( MODELS ) ) ) ) {
5 implicit solver =>

6 // assert b3 + b × c = 3, for b, c ∈ R, then checkSat and getModel
7 |= ( ( b * b * b ) + ( b * c ) === 3.0 ) flatMap
8 { _ => checkSat () } flatMap // If |= is Success then checkSat
9 { _ => getModel () } // If checkSat is Success then getModel
10 }

Listing 3. Non Linear Real Arithmetic and "monadic" usage

1 // Predicates must be named in SMTLIB to refer to them and compute interpolant
2 val P1 = ( x === z + 1 & z >= 0 ).named( "P1" )
3 val P2 = ( y >= x & y < 1 ).named( "P2" )
4
5 val interpolants =
6 using( new SMTSolver( "SMTInterpol", new SMTInit( QF_LIA , List( INTERPOLANTS )))) {
7 implicit solver =>
8 |= ( P1 & P2 ) flatMap // assert P1 and P2
9 { _ => checkSat () } flatMap // If previous asserts are Success then checkSat
10 { _ => getInterpolants( P1, P2 ) } // If checkSat is Success then getInterpolants
11 }
12
13 // There should be only one interpolant
14 interpolants.isSuccess shouldBe true
15 interpolants.get.size shouldBe 1
16 val i = interpolants.get.head
17
18 // Check that i is an interpolant
19 using( new SMTSolver( "CVC4", new SMTInit( QF_LIA , List() ) ) ) {
20 implicit solver =>
21 // Create a context on the solver 's stack and assert first term
22 push()
23 // check P1 =⇒ I i.e., P1 ∧ ¬I is UNSAT
24 isSat ( P1 & !i ) shouldBe Success( UnSat() )
25 // Pop previous term from the stack
26 pop()
27 // check I ∧ P2 is UNSAT
28 isSat ( i & P2 ) shouldBe Success( UnSat() )
29 }

Listing 4. Computing and checking interpolants



SCALA’17, October 22–23, 2017, Vancouver, Canada Franck Cassez and Anthony M. Sloane

• Another common problemwith SMTLIB S-expressions
is syntax errors (e.g., due to missing parentheses). In
such a case, the error messages issued by the solver
are sometimes hard to decrypt especially when writ-
ing long nested formulas as S-expressions. ScalaSMT
constructs correct (well-parenthesised) S-expressions.
• Finally, when using SMTLIB, type checking occurs at
run-time. In contrast, ScalaSMT enforces consistent
typing: a Scala program with x === true and x
of type Ints will not type-check. In the latter case a
useful error message is issued by the Scala compiler
which greatly helps in fixing the problem.

ScalaSMTprovides an interface to SMTLIB compliant solvers
together with a DSL and SMT-solvers can be used as back
ends inside other tools: An example is our static analysis
tool, Skink [Cassez et al. 2017], which uses ScalaSMT and
solvers with different capabilities (e.g., Z3, SMTInterpol)

3 Architecture of ScalaSMT

An overview of ScalaSMT’s architecture is provided in Fig-
ure 1. The current version supports five SMTLIB-compliant
solvers: Z33, SMTInterpol4, Yices5, MathSat6 and CVC47.
It comprises 99 source files and 10402 lines of code (LOC).

DSL

Sbt-rats/Kiama Expect ARM

CVC4Z3SMTInterpol Yices MathSat

Pretty-print
& parse SMTLIB
S-Expressions

send receive

Resource
Management

Kill

Read/write from/to
Spawn/kill process

Figure 1. ScalaSMT Architecture

The main challenges in designing a robust, configurable
and maintainable ScalaSMT library are:

1. reading/writing S-expressions from/to the solver;
2. interacting with an asynchronous external solver pro-

cess from Scala code.

To address these challenges, ScalaSMT uses some Scala
libraries and an SBT plugin that we described hereafter.

3https://github.com/Z3Prover/z3
4https://ultimate.informatik.uni-freiburg.de/smtinterpol/
5http://yices.csl.sri.com
6http://mathsat.fbk.eu
7http://cvc4.stanford.edu/

3.1 Sbt-rats and Kiama

Our parser and pretty-printer for SMTLIB S-expressions is
written using our sbt-rats8 parser generator [Sloane et al.
2016] and our Kiama9 Scala library for language process-
ing [Sloane 2009]. The sbt-rats SMTLIB syntax definitions
in ScalaSMT has 500 LOC, with much simpler and maintain-
able definitions than the equivalent hand-coded counterparts
in another similar project Scala-SMTLIB.10 The generated
parser implementation in Java has 11868 LOC and the Scala
pretty-printer 408 LOC. The generated syntax-tree classes
comprise of 269 LOC.
Our SMTLIB parser builds an abstract syntax tree (AST)

that can be processed using Kiama rewriting strategies and
annotated using Kiama attributes. This enables us to perform
analysis and transformation on the AST, e.g., to construct
S-expressions, or to compute properties such as variable
names, or whether an AST term uses just linear arithmetic,
or whether it contains quantifiers.

3.2 Expect

The main problem to address when programmatically inter-
acting with an external asynchronous process (the solver) is
to detect that the output is ready to collect. This means we
need to be able to determine when the solver has finished its
computation for a given input. This problem of interaction
with an asynchronous process has long been identified and
general solutions like Expect11 have been devised. The idea
of Expect is to send some input to an interactive program and
detect the end of a computation (output ready) by detecting
the prompt of the program on the output channel. A typical
interaction is Expect runs as follows:
// send some input msg to the interactive program
send(input)
// expect to see a string `output', followed by a
// "prompt", within 10 seconds
output = expect(prompt, 10.seconds)

We have developed a Scala package Expect12 which pro-
vides a simple Scala implementation of Expect in 76 LOC.
Our implementation provides the send and expectmethods
and uses Java’s ProcessBuilder, Future and Scanner.

3.3 Automatic Resource Management

An issue that is sometimes overlooked when spawning pro-
cesses is the proper release of acquired resources. For in-
stance, ScalaSMT spawns a solver process and attaches to
it via pipes. Both the process and the pipes are resources
(e.g., file descriptors) of the host OS. As per the documenta-
tion of the Java’s ProcessBuilder package, it is not guaran-
teed that resources are released when the Java program ter-
minates. The user is supposed to kill the processes spawned.

8https://bitbucket.org/inkytonik/sbt-rats
9https://bitbucket.org/inkytonik/kiama
10https://github.com/regb/scala-smtlib
11http://expect.sourceforge.net
12https://bitbucket.org/franck44/expect-for-scala

https://github.com/Z3Prover/z3
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://yices.csl.sri.com
http://mathsat.fbk.eu
http://cvc4.stanford.edu/
https://bitbucket.org/inkytonik/sbt-rats
https://bitbucket.org/inkytonik/kiama
https://github.com/regb/scala-smtlib
http://expect.sourceforge.net
https://bitbucket.org/franck44/expect-for-scala


ScalaSMT: Satisfiability Modulo Theory in Scala (Tool Paper) SCALA’17, October 22–23, 2017, Vancouver, Canada

To address this issue, ScalaSMT uses the Scala-ARM13 (Au-
tomatic Resource Management) library. This provides safe re-
source management and enforces that the resources (solvers
and pipes) that are spawned by the library are properly re-
leased after usage.

4 Discussion

There are other approaches and implementation of SMTLIB
in other languages like Haskell, Z3py. The Scala implemen-
tations similar to ours are:
• Scala-SMTLIB14 operates similar to ScalaSMT via in-
teractive solvers processes. It does not offer a DSL, nor
safe resource management. The pretty-printer/parser
is hand-coded, which makes it harder to extend and
add new features or commands.
• Scala SMTLIB Interface15 also spawns an interac-
tive solver process. It has a hand-coded parser/pretty-
printer. The DSL offers limited support for some theo-
ries like Reals, Ints.
• ScalaZ316 offers Scala bindings to Z3 only. It does
not support other solvers.

Our experience in using ScalaSMT in our static analysis
tool Skink [Cassez et al. 2017] shows that it greatly simpli-
fies the code to write to generate and solve SMT queries.
ScalaSMT also allows us to easily select the concrete solver
depending on the features of an SMT query.

The use of sbt-rats to generate the SMTLIB parser/pretty-
printer makes it easy to extend ScalaSMT and add new
theories or commands.
We have not had space to describe some other interest-

ing features of ScalaSMT. For instance, ScalaSMT main-
tains a stack of symbol declarations that is not available as
an SMTLIB command. This enables us to simplify the DSL:
e.g., the SAT query at lines 6 to 9 in Listing 2 does not require
the user to declare the variables x ,y to the solver before using
isSat; the necessary SMTLIB declarations (declare-fun as
per Listing 1 lines 5 and 6) are computed automatically by
isSat and pushed to the solver prior to asserting the predi-
cates.
In its current state, ScalaSMT interacts with the solvers

via standard input and output. However, our implementa-
tion is ready to be interfaced with in-memory solvers: for
instance, Z3, SMTInterpol offer Java bindings to use the
solvers library directly. There is also a unified Java inter-
face17 [Karpenkov et al. 2016] for these solvers that provides
a good basis for adding in-memory capabilities to our im-
plemetation. This will improve the responsiveness of our
abstract solver by decreasing communication overheads.
13https://github.com/jsuereth/scala-arm
14https://github.com/regb/scala-smtlib
15https://github.com/dzufferey/scala-smtlib-interface
16http://lara.epfl.ch/w/ScalaZ3
17https://github.com/sosy-lab/java-smt
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