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Abstract. Real-time programs are made of instructions that can per-
form assignements to discrete and real-valued variables. They are general
enough to capture interesting classes of timed systems such as timed au-
tomata, stopwatch automata, time(d) Petri nets and hybrid automata.
We propose a semi-algorithm using refinement of trace abstractions to
solve the reachability verification problem for real-time programs. We
report on the implementation of our algorithm and we show that our
new method provides solutions to problems which are unsolvable by the
current state-of-the-art tools.

1 Introduction

Model-checking is a widely used formal method to assist in verifying software
systems. A wide range of model-checking techniques and tools is available and
there are numerous successful applications in the safety-critical industry and
the hardware industry – in addition the approach is seeing an increasing adop-
tion in the general software engineering community. The main limitation of this
formal verification technique is the so-called state explosion problem. Abstrac-
tion refinement techniques were introduced to overcome this problem. The most
well-known technique is probably the Counter Example Guided Abstraction Re-
finement (CEGAR) method pioneered by Clarke et al. [12]. In this method the
state space is abstracted with predicates on the concrete values of the program
variables. The (counter-example guided) refinement of trace abstraction (TAR)
method was proposed recently by Heizmann et al. [17, 18] and is based on ab-
stracting the set of traces of a program rather than the set of states. These two
techniques have been widely used in the context of software verification. Their
effectiveness and versatility in verifying qualitative (or functional) properties of
C programs is reflected in the most recent Software Verification competition
results [11, 6].

Analysis of timed systems. Reasoning about quantitative properties of pro-
grams requires extended modeling features like real-time clocks. Timed Au-
tomata [1] (TA), introduced by Alur and Dill in 1989, is a very popular for-
malism to model real-time systems with dense-time clocks. Efficient symbolic
model-checking techniques for TA are implemented in the real-time model-
checker Uppaal [4]. Extending TA, e.g., with the ability to stop and resume



clocks (stopwatches), leads to undecidability of the reachability problem [20, 9].
Semi-algorithms have been designed to verify hybrid systems (extended classes
of TA) and are implemented in a number of dedicated tools [16, 19, 15]. How-
ever, a common difficulty with the analysis of quantitative properties of timed
automata and extensions thereof is that ad-hoc data-structures are needed for
each extension and each type of problem. As a consequence, the analysis tools
have special-purpose efficient algorithms and data-structures suited and opti-
mized only towards their specific problem and extension.

In this work we aim to provide a uniform solution to the analysis of timed
systems by designing a generic semi-algorithm to analyse real-time programs
which semantically captures a wide range of specification formalisms, including
hybrid automata. We demonstrate that our new method provides solutions to
problems which are unsolvable by the current state-of-the-art tools. We also show
that our technique can be extended to solve specific problems like robustness and
parameter synthesis.

Related work. The refinement of trace abstractions (TAR) was proposed by
Heizmann et al. [17, 18]. It has not been extended to the verification of real-time
systems. Wang et al. [23] proposed the use of TAR for the analysis of timed
automata. However, their approach is based on the computation of the standard
zones which comes with usual limitations: it is not applicable to extensions of
TA (e.g., stopwatch automata) and can only discover predicates that are zones.
Their approach has not been implemented and it is not clear whether it can
outperform state-of-the-art techniques e.g., as implemented in Uppaal. Dierks
et al. [14] proposed a CEGAR based method for Timed Systems. To the best of
our knowledge, this method got limited attention in the community.

Tools such as Uppaal [4], SpaceEx [16], HyTech [19], PHAver [15], ver-
ifix [21], symrob [22] and Imitator [2] all rely on special-purpose polyhedra
libraries to realize their computation.

Our technique is radicaly different to previous approaches and leverages the
power of SMT-solvers to discover non-trivial invariants for the class of hybrid
automata. All the previous analysis techniques compute, reduce and check the
state-space either up-front or on-the-fly, leading to the construction of significant
parts of the statespace. In contrast our approach is an abstraction refinement
method and the refinements are built by discovering non-trivial program invari-
ants that are not always expressible using zones, or polyehdra. This enables us to
successfully analyse (terminate) instances of non-decidable classes like stopwatch
automata. A simple example is discussed in Section 2.

Our contribution. In this paper, we propose a refinement of trace abstrac-
tions (TAR) technique to solev the reachability problem for real-time programs.
Our approach combines an automata-theoretic framework and state-of-the-art
Satisfiability Modulo Theory (SMT) techniques for discovering program invari-
ants. We demonstrate on a number of case-studies that this new approach can
outperform special-purpose tools and algorithms in their respective domain.
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2 Motivating Example

The finite automatonA1 (Fig. 1), accepts the regular language L(A1) = i.t0.t
∗
1.t2.

By interpreting the labels of A1 according to the Table in Fig. 1, we can view it
as a stopwatch automaton with 2 clocks, x and z, and one stopwatch y (the vari-
ables). Each label defines a guard g (a Boolean constraint on the variables), an
update u which is an (discrete) assign-

ι `0 `1 `2

Edge Guard Update Rate
i True x:=y:=z:=0 dy/dt=1
t0 True z:=0 dy/dt=0
t1 x==1 x:=0 dy/dt=0
t2 x-y>=1 and z<1 - dy/dt=0

i t0

t1

t2

Fig. 1: Finite Automaton A1

ment to the variables, and a rate (vec-
tor) r that defines the derivatives of
the variables.3 We associate with a se-
quence w = a0.a1. · · · .an ∈ L(A1), a
(possibly empty) set of timed words,
τ(w), of the form (a0, δ0). · · · (an, δn)
where δi ≥ 0, i ∈ [0..n]. For instance,
the timed words associated with i.t0.t2
are of the form (i, δ0).(t0, δ1).(t2, δ2),
for all δi ∈ R≥0, i = 0, 1, 2 such that following constraints can be satisfied:

x0 = y0 = z0 = δ0 ∧ δ0 ≥ 0 (P0)

x1 = x0 + δ1 ∧ y1 = y0 ∧ z1 = δ1 ∧ δ1 ≥ 0 (P1)

x1 − y1 ≥ 1 ∧ z1 < 1 ∧ x2 = x1 + δ2 ∧ y2 = y1 ∧ z2 = z1 + δ2 ∧ δ2 ≥ 0 (P2)

Initially (in location ι, source of edge i) there are no constraints on the vari-
ables and the initial values of the variables x, y, z are denoted x−1, y−1, z−1 and
are unconstrained. Hence we assume that the initial predicate on the variables
x−1, y−1, z−1 is P−1 = True. P0 must be satisfied after taking i and letting time
progress for δ0 ≥ 0 time units, which is enforced by a constraint on the variables4

x0, y0, z0 that stand for the values of x, y, z after taking i; similarly P0∧P1 must
hold after i.t0 and P0∧P1∧P2 after i.t0.t2. Hence the set of timed words associ-
ated with i.t0.t2 is not empty iff P0 ∧ P1 ∧ P2 is satisfiable. The timed language,
T L(A1), accepted by A1 is the set of timed words associated with all the words
w accepted by A1 i.e., T L(A1) = ∪w∈L(A1)τ(w).

The language emptiness problem is a standard problem in Timed Automata
theory and is stated as follows [1]: “given a (Timed) Automaton A, is T L(A)
empty?”. It is known that the emptiness problem is decidable for some classes
of real-time programs (e.g., Timed Automata [1]), but undecidable for slightly
more expressive classes (e.g., Stopwatch Automata [20]). It is ususally possible to
compute symbolic representations of sets of reachable valuations after a sequence
of labels. However, to compute the set of reachable valuations we may need to
explore an arbitrary and unbounded number of sequences. Hence only semi-
algorithms exist to compute the set of reachable valuations. For instance, using
PHAver to compute the set of reachable valuations for A1 does not terminate
(Table 1). To force termination, we can compute an over-approximation of the set

3 As x and z are clocks their rate is always 1 and omitted in the Table.
4 If x was not reset by i, we would have a constraint x0 = x−1, with x−1 unconstrained.
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Sequence PHAver Uppaal

i.t0 z = x− y ∧ 0 ≤ z ≤ x 0 ≤ y ≤ x ∧ 0 ≤ z ≤ x
i.t0.t1 z = x− y + 1 ∧ 0 ≤ x ≤ z ≤ x+ 1 0 ≤ z − x ≤ 1 ∧ 0 ≤ y
i.t0.(t1)2 z = x− y + 2 ∧ 0 ≤ x ≤ z − 1 ≤ x+ 1 1 ≤ z − x ≤ 2 ∧ 0 ≤ y
i.t0.(t1)3 z = x− y + 3 ∧ 0 ≤ x ≤ z − 2 ≤ x+ 1 2 ≤ z − x ≤ 3 ∧ 0 ≤ y
. . . . . . . . .

i.t0.(t1)k z = x− y + k ∧ 0 ≤ x ≤ z − k + 1 ≤ x+ 1 k − 1 ≤ z − x ≤ k ∧ 0 ≤ y
. . . . . . . . .

Table 1: Symbolic representation of reachable states after a sequence of instruc-
tions. Uppaal concludes that T L(A1) 6= ∅ due to the over-approximation using
DBMs. PHAver does not terminate.

of reachable valuations. Computing an over-approximation is sound (if we declare
a timed language to be empty it is empty) but incomplete i.e., it may result in
false positives (we declare a timed language non empty whereas it is empty).
This is witnessed by the column “Uppaal” in Table 1 where Uppaal over-
approximates sets of valuations in the stopwatch automaton with DBMs. After
i.t0, the over-approximation is 0 ≤ y ≤ x ∧ 0 ≤ z ≤ x. This over-approximation
intersects the guard x− y ≥ 1∧ z− y < 1 of t2 and `2 is reachable but this is an
artifact of the over-approximation.5

Neither Uppaal nor PHAver can prove that T L(A1) 6= ∅. The technique
we introduce in this paper enables us to discover arbitrary abstractions and
invariants that enable us to prove T L(A1) 6= ∅. Our method is a version of the
Trace Abstraction Refinement (TAR) technique introduced in [17]. We illustrate
how the method works on the stopwatch automaton A1:

– find a (untimed) word accepted by A1. Let σ1 = i.t0.t2 be such a word.
We check whether τ(σ1) = ∅ by encoding the corresponding associated
timed traces as described by Equations (P0)–(P2) and then check whether
P0∧P1∧P2 is satisfiable6. As P0∧P1∧P2 is not satisfiable we have τ(σ1) = ∅.

– from the proof that P0∧P1∧P2 is not satisfiable, we can obtain an inductive
interpolant that comprises of two predicates I0, I1 – one for each conjunction
– over the clocks x, y, z. An example of inductive interpolant7 is I0 = x ≤ y
and I1 = x− y ≤ z. These predicates are invariants of the trace σ1, and can
be used to annotate σ1 with pre and post-conditions (Equation 1), which
are Hoare triples of the form {P} a {Q}:

{True} i {I0} t0 {I1} t2 {False} (1)

{True} i {I0} t0 {I1}{I1}{I1} (t1)∗(t1)∗(t1)∗ {I1}{I1}{I1} t2 {False} (2)

We can also prove that {I1} (t1)∗ {I1} is a valid Hoare triple and combined
with Equation 1 this gives Equation 2. For each word w ∈ i.t0.(t1)∗.t2,
τ(w) = ∅ and as L(A1) ⊆ i.t0.(t1)∗.t2 we can conclude that T L(A1) = ∅.

5 Uppaal terminates with the result “the language may not be empty”.
6 This can be done using an SMT-solver e.g., Z3.
7 This is the pair returned by Z3 for P0 ∧ P1 ∧ P2.
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3 Real-Time Programs

Our approach is general enough and applicable to a wide range of timed systems
called real-time programs. As an example, timed, stopwatch, hybrid automata
and time Petri nets are special cases of real-time programs.

In this section we define real-time programs. Real-time programs define the
control flow of instructions, just as standard imperative programs do. The in-
structions can update variables by assigning new values to them. Each instruc-
tion has a semantics and together with the control flow this precisely defines the
semantics of real-time programs.

Notations. A finite automaton over an alphabet Σ is a tuple A = (Q, ι,Σ,
∆, F ) where Q is a finite set of locations s.t. ι ∈ Q is the initial location, Σ is a
finite alphabet of actions, ∆ ⊆ (Q×Σ×Q) is a finite transition relation, F ⊆ Q
is the set of accepting locations. A word σ = α0.α1. · · · .αn is a finite sequence
of letters from Σ; we let σ[i] = αi the i-th letter, |σ| be the length of σ which
is n + 1. ε is the empty word and |ε| = 0, Σ∗ is the set of finite words over Σ.
The language, L(A), accepted by A is defined in the usual manner as the set of
words that can lead to F from ι.

Let V be a finite set of real-valued variables. A valuation is a function ν :
V → R. The set of valuations is [V → R]. We denote by β(V ) a set of constraints
on the variables in V . Given ϕ ∈ β(V ), we let Vars(ϕ) be the set of free variables
in ϕ. The truth value of a constraint ϕ given a valuation ν is denoted by ϕ(ν)
and we write ν |= ϕ when ϕ(ν) = True. We let JϕK = {ν | ν |= ϕ}. An update of
the variables in V is a binary relation µ ⊆ [V → R]× [V → R]. Given an update
µ and a set of valuations V, we let µ(V) = {ν′ | ∃ν ∈ V and (ν, ν′) ∈ µ}. We let
U(V ) be the set of updates on the variables in V . A rate ρ is a function from V
to Q (rates can be negative), i.e., an element of QV . We let R(V ) ⊆ QV be a set
of valid rates – that is, rates that can be written (syntactically) as a predicate
on an edge. Given a valuation ν, a valid rate ρ ∈ Q(V ) and a timestep δ ∈ R≥0
the valuation ν + ρ× δ is defined by: (ν + ρ× δ)(v) = ν(v) + ρ(v)× δ for v ∈ V .

Real-Time Instructions. Let I = β(V )×U(V )×R(V ) be a countable set of
instructions. Each α ∈ I is a tuple (guard, update, rates) denoted by (γα, µα, ρα).
Let ν : V → R and ν′ : V → R be two valuations. For each pair (α, δ) ∈ I ×R≥0
we define the following transition relation:

ν
α,δ−−−→ ν′ ⇐⇒


1. ν |= γα(guard of α is satisfied in ν),

2. ∃ν′′ s.t. (ν, ν′′) ∈ µα (discrete update allowed by α) and

3. ν′ = ν′′ + δ × ρα(continuous update as defined by α).

The semantics of α ∈ I is a mapping JαK : [V → R] → [V → R] that can be
extended to sets of valuations as follows:

ν ∈ [V → R], JαK(ν) = {ν′ | ∃δ ≥ 0, ν
α,δ−−−→ ν′}

K ⊆ [V → R], JαK(K) =
⋃
ν∈K

JαK(ν).
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Let K be a set of valuations, α ∈ I and σ ∈ I∗. We inductively define the
post operator Post as follows:

Post(K, ε) = K

Post(K,α.σ) = Post(JαK(K), σ)

The post operator extends to logical constraints ϕ ∈ β(V ) by defining Post(ϕ, σ) =
Post(JϕK, σ). In the sequel, we assume that, when ϕ ∈ β(V ), then JαK(JϕK) is also
definable as a constraint in β(V ). This inductively implies that Post(ϕ, σ) can
also be expressed as a constraint in β(V ) for sequences of instructions σ ∈ I∗.

Timed Words and Feasible Words. A timed word (over alphabet I) is a
finite sequence σ = (α0, δ0).(α1, δ1). · · · .(αn, δn) such that for each 0 ≤ i ≤ n,
δi ∈ R≥0 and αi ∈ I. The timed word σ is feasible if and only if there exists a
set of valuations {ν0, . . . , νn+1} ⊆ [V → R] such that:

ν0
α0,δ0−−−−→ ν1

α1,δ1−−−−→ ν2 · · · νn
αn,δn−−−−−→ νn+1.

We let Unt(σ) = α0.α1. · · · .αn be the untimed version of σ. We overload the
term feasible as follows: an untimed word w ∈ I∗ is feasible iff w = Unt(σ) for
some feasible timed word σ.

Lemma 1. An untimed word w ∈ I∗ is feasible iff Post(True, w) 6= False.

Proof. The lemma follows trivially from the inductive definition of Post. ut

Real-Time Programs. The specification of a real-time program decouples the
control (e.g., for Timed Automata, the locations) and the data (the clocks).
A real-time program is a pair P = (AP , J·K) where AP is a finite automaton
AP = (Q, ι, I,∆, F ) over the finite alphabet8 I ⊆ I, ∆ defines the control-flow
graph of the program and J·K (as defined previously for I) provides the semantics
of each instruction. A timed word σ is accepted by P if and only if:

1. Unt(σ) is accepted by AP (Unt(σ) ∈ L(AP )) and
2. σ is feasible.

Notice that the definition of feasibility of a timed word σ is independent from
the acceptance of Unt(σ) by AP . The timed language, T L(P ), of a real-time
program P is the set of timed words accepted by P , i.e., σ ∈ T L(P ) if and only
if Unt(σ) ∈ L(AP ) and σ is feasible.

Remark 1. We do not assume any particular values initially for the variables
of a real-time program (the variables that appear in I). This is reflected by
the definition of feasibility that only requires the existence of valuations without
contraining the initial one ν0. When specifying a real-time program, initial values
can be set by regular instructions. This is similar to standard programs where
the first instructions can set the values of some variables.
8 I can be infinite but we require the transition relation of AP to be finite.
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Timed Language Emptiness Problem. The (timed) language emptiness
problem asks the following:

Given a real-time program P , is T L(P ) empty?

Theorem 1. T L(P ) 6= ∅ iff ∃w ∈ L(AP ) such that Post(True, w) 6⊆ False.

Proof. T L(P ) 6= ∅ iff there exists a feasible timed word σ such that Unt(σ) is
accepted by AP . This is equivalent to the existence of a feasible word w ∈ L(AP ),
and by Lemma 1, feasibility of w is equivalent to Post(True, w) 6⊆ False. ut

Useful Classes of Real-Time Programs. Timed Automata are a special
case of real-time programs. The variables are called clocks. β(V ) is restricted
to constraints on individual clocks or difference constraints generated by the
grammar:

b1, b2 ::= True | False | x− y 1 k | x 1 k | b1 ∧ b2 (3)

where x, y ∈ V , k ∈ Q≥0 and 1∈ {<,≤,=,≥, >}9. We note that wlog. we
omit location invariants as for the language emptiness problem, these can be
implemented as guards. An update in µ ∈ U(V ) is defined by a set of clocks to
be reset. Each pair (ν, ν′) ∈ µ is such that ν′(x) = ν(x) or ν′(x) = 0 for each
x ∈ V . The valid rates are fixed to 1, and thus R(V ) = {1}V .

Stopwatch Automata can also be defined as a special case of real-time pro-
grams. As defined in [9], Stopwatch Automata are Timed Automata extended
with stopwatches which are clocks that can be stopped. β(V ) and U(V ) are the
same as for Timed Automata but the set of valid rates is defined by the functions
of the form R(V ) = {0, 1}V (the clock rates can be either 0 or 1). An example
of a Stopwatch Automaton is given by the timed system A1 in Fig. 1.

As there exists syntactic translations (preserving reachability) that maps
hybrid automata to stopwatch automata [9], and translations that map time
Petri nets [5, 10] and extensions [8, 7] thereof to timed automata, it follows that
time Petri nets and hybrid automata are also special cases of real-time programs.
This shows that the method we present in the next section is applicable to wide
range of timed systems.

What is remarkable as well, is that

ι 0 1 2

Edge Guard Update
i True x:=y:=k:=0
t0 x ≥ 1 —
t1 True x:=0; k++
t2 y < k —

i
t0

t1

t2

Fig. 2: Real-time program P2

it is not restricted to timed systems
that have a finite number of discrete
states but can also accommodate in-
finite discrete state spaces. For exam-
ple, the automaton in Fig. 2 has two
clocks x and y and an unbounded in-
teger variable k. Even though k is un-
bounded, our technique discovers the
invariant y ≥ k at location 1 which is
over a real-time clock y and the inte-
ger variable k. It allows us to prove that T L(P2) = ∅.

9 While difference constraints are strictly disallowed in most definitions of Timed
Automata, the method we propose retain its properties regardless of their presence.
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4 Trace Abstraction Refinement for Real-Time Programs

In this section we propose a semi-algorithm to solve the language emptiness
problem for real-time programs. The algorithm is a version of the refinement of
trace abstractions (TAR) approach [17] for timed systems.

Refinement of Trace Abstration for Real-Time Programs. Fig. 3 gives
a precise description of the TAR algorithm for real-time programs. This is the
standard trace abstraction refinement algorithm as introduced in [17] – we there-
fore omit theorems of completeness and soundness as these will be equivalent to
the theorems in [17] and are proved in the exact same manner. The input to the
algorithm is a real-time program P = (AP , J·K). An invariant of the algorithm is
that R is empty or contains only infeasible traces.

Step 1: L(AP ) ⊆ R? Step 2: w is feasible?

T L(P ) = ∅ T L(P ) 6= ∅, σ is a witness

R = ∅ Step 3: R := R ∪ L(IA(w))

Yes
No. Let w ∈ L(AP ) \R

Yes

No

Fig. 3: Trace Abstraction Refinement Algorithm for Real-Time Programs

Initially the refinement R is the empty set. The algorithm works as follows:

Step 1 check whether all the (untimed) traces in L(AP ) are in R. If this is the
case, T L(P ) is empty and the algorithm terminates. Otherwise, there is a
sequence w ∈ L(AP ) \R, goto Step 2;

Step 2 if w is feasible i.e., there is a feasible timed word σ such that Unt(σ) = w,
then σ ∈ T L(P ) and T L(P ) 6= ∅ and the algorithm terminates. Otherwise
w is not feasible, goto Step 3;

Step 3 w is infeasible and given the reason for infeasibility we can construct
a finite interpolant automaton, IA(w), that accepts w and other words that
are infeasible for the same reason. How IA(w) is computed is addressed in
the sequel. The automaton IA(w) is added to the previous refinement R and
the algorithm starts a new round at Step 1.

Contruction of Interpolant Automata. When it is determined that a trace
w is infeasible, we can easily discard such a single trace and continue searching.
However, the power of the TAR method is to generalize the infeasibility of a
single trace w into a family (regular set) of traces. This regular set of infeasible
traces is computed from the reason of infeasiblity of w and is formally specified
by an interpolant automaton, IA(w). The reason for infeasibility itself has the
form of an inductive interpolant.

8



True

I1

I3 I4 I5 I6

False

I2
t0

t2

t0 t1
t0

t1

t2

i

i

Fig. 4: Interpolant automaton for L(IA(w1)) ∪ L(IA(w2)).

Given a word w = a0.a1. · · · .am ∈ I∗, we can check whether w is feasible
by encoding the side-effects of each instruction in w, similar to a Static Single
Assignment (SSA) form in programming languages. We denote Enc(w) = P0 ∧
P1 ∧ · · · ∧ Pm the result of the encoding of the side effects of w.

An example of an encoding for the real-time program A1 (Fig. 1) is given by
the predicates in Equation (P0)–(P2). The variables xk, yk, zk denote the values
of x, y, z after k steps (initially the variables can have arbitrary values). The
sequence w1 = i.t0.t2 is feasible iff Enc(w1) = P0 ∧ P1 ∧ P2 is satisfiable. Given
a conjunctive formula f = P0 ∧ · · · ∧ Pm, if f is unsatisfiable, an interpolating
SMT-solver is capable of producing inductive arguments for the unsatisfiability
reason. This argument is an inductive interpolant I0, . . . , Im−1 s.t for any postfix-
sequence 0 ≤ n ≤ m it holds that In ∧ Pn+1 ∧ . . . Pm is unsatisfiable (and the
variables appearing in In must be variables used in P0 · · ·Pn and Pn+1, · · · , Pm).

One can intuitively think of each interpolant as a sufficient conditions for
infeasibility of the post-fix of the trace and this can be represented by a sequence
of Hoare triples of the form {P} a {Q}:

{True} a0 {I0} a1 {I1} · · · {Im−1} am {False}

Consider the real-time program P2 of Fig. 2 and the two infeasible untimed words
w1 = i.t0.t2 and w2 = i.t0.t1.t0.t2. The Hoare triples for w1 and w2 are given
by Equation 4-5 where the predicates are: I1 = y ≥ x ∧ (k = 0), I2 = y ≥ k,
I3 = y ≥ x ∧ k ≤ 0, I4 = y ≥ 1 ∧ k ≤ 0, I5 = y ≥ k + x, I6 = y ≥ k + 1.

{True} i {I1} t0 {I2} t2 {False} (4)

{True} i {I3} t0 {I4} t1 {I5} t0 {I6} t2 {False} (5)

As can be seen in Equation 5, the sequence contains two occurrences of t0:
this suggests that a loop occurs in the program, and this loop may be in-
feasible as well. Formally, because Post(I6, t1) ⊆ I5, any trace of the form
i.t0.t1.(t0.t1.t0)∗.t2 is infeasible. This enables us to construct IA(w2) as accepting
the regular set of infeasible traces i.t0.t1.(t0.t1.t0)∗.t2. Overall, because w1 is also
infeasible, we obtain a refinement which is L(IA(w1)) ∪ L(IA(w2)), Fig. 4. The
detailed construction of IA(w) for an infeasible word w is given in Appendix A.

Feasibility Beyond Timed Automata. Satisfiability can be checked with
an SMT-solver (and decision procedures exist for useful theories.) In the case
of timed automata and stopwatch automata, the feasibility of a trace can be
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encoded as a linear program. The corresponding theory, Linear Real Arithmetic
(LRA) is decidable and supported by most SMT-solvers. It is also possible to
encode non-linear constraints (non-linear guards and assignments). In the latter
cases, the SMT-solver may not be able to provide an answer to the SAT problem
as non-linear theories are undecidable. However, we can still build on a semi-
decision procedure of the SMT-solver, and if it provides an answer, get the status
of a trace (feasible or not).

In the sequel, we assume that our encoding satisfies Lemma 2, Appendix A.

5 Experiments

We have conducted two sets of experiments, each testing the applicability of our
proposed method (denoted by rttar) compared to state-of-the-art tools with
specialized data-structures and algorithms for the given setting. All experiments
were conducted on AMD Opteron 6376 Processors and limited to 1 hour of
computation. The rttar tool uses the Uppaal parsing-library, but relies on Z3
[13] for the interpolant computation.

Verification of Timed and Stopwatch Automata. The real-time programs,
P1 of Fig. 1 and P2 of Fig. 2 can be analysed with our technique. The analysis
(rttar algorithm, 3) terminates in two iterations for the program P1, a stop-
watch automaton. As emphasised in the introduction, neither Uppaal (over-
approximation with DBMs) nor PHAver can provide the correct answer to
reachability problem for P1.

To prove that location 2 is unreachable in program P2 requires to discover an
invariant that mixes integers (discrete part of the state) and clocks (continuous
part). Our technique successfully discovers the program invariants I5 and I6
(thanks to the interpolating SMT-solver). As a result the refinement depicted
in Fig. 2 is constructed and as it contains L(AP2

) the refinement algorithm
terminates and proves that 2 is not reachable. AP2

can only be analysed in
Uppaal with significant computational effort and bounded integers.

Robustness of Timed Automata. Another remarkable feature of our tech-
nique is that it can readily be used to check robustness of timed automata. In
essence, checking robustness amounts to enlarging the guards of an TA A by an
ε > 0. The resulting TA is Aε. The automaton A is (safety) robust iff there is
some ε > 0 such T L(Aε) = ∅.

To address the robustness problem for a real-time program P , we use our
rttar algorithm as follows:

1. build Pε with guards enlarged by ε; ε is a parameter (a stopwatch with rate 0)
that is unconstrained at the beginning of the program. The first instruction
in the program Pε is a constraint enforcing ε > 0 and then Pε is similar to
P (with guards enlarged);

2. use rttar to check whether T L(Pε) = ∅;
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3. if T L(Aε) = ∅ then P is robust for any ε > 0. Otherwise, we can synthesise
a constraint10 of the form ε ./ k, ./∈ {>,≥}, such T L(Aε) 6= ∅ for ε ./ k.
Hence we know that T L(Aε) = ∅ can only be achieved if ε ≤ k if the
constraint is ε > k (or ε < k if ε ≥ k).

4. We now build Pε<k similar to Pε but the first instruction enforces 0 < ε < k.
We iterate and use rttar to check whether T L(Pε<k) = ∅.

The details and proofs of this algorithm are special cases of the algorithm pro-
vided in Appendix B. Assuming P is robust11 i.e., there exists some ε > 0 such
that T L(Aε) = ∅ and the previous process terminates we can compute the
largest set of parameters for which P is robust.

Test Time ε < Time ε <

symrob rttar

csma 05 0.43 1/3 68.23 1/3
csma 06 2.44 1/3 227.15 1/3
csma 07 8.15 1/3 1031.72 1/3
fischer 04 0.16 1/2 45.24 1/2
fischer 05 0.65 1/2 249.45 1/2
fischer 06 3.71 1/2 1550.89 1/2
M3c 4.34 250/3 43.10 ∞
M3 N/A N/A 43.07 ∞
a 27.90 1/4 15661.14 1/2

Table 2: Results for robustness analysis
comparing rttar with symrob. Time
is given in seconds. N/A indicates that
symrob was unable to compute the ro-
bustness for the given model.

As Table 2 demonstrates, sym-
rob [22] and rttar do not always
agree on the results. Notably, since
the TA M3 contains strict guards,
symrob is unable to compute the
robustness of it. Furthermore, sym-
rob over-approximates ε, an artifact
of the so-called “loop-acceleration”-
technique and the polyhedra-based al-
gorithm. This can be observed in the
modified model M3c, which is now an-
alyzable by symrob, but differ in re-
sults compared to rttar. This is the
same case with the model denoted a.
We experimented with ε-values to con-
firm that M3 is safe for all the values
tested – while a is safe only for values
tested respecting ε < 1

2 . We can also
see that our proposed method is sig-
nificantly slower than symrob. As our tool is currently only a prototype with
rudimentary state-space-reduction-techniques, this is to be expected.

Parametric Stopwatch Automata. In our last series of tests, we compare
the rttar tool to Imitator [2] – the state-of-the-art parameter synthesis tool
for reachability 12. We here extend our algorithm in a similar manner as to what
was proposed in Section 5, but for arbitrary parameters – the exact algorithm is
available in Appendix B. For the test-cases we use the gadget presented initially
in Fig. 1, a few of the test-cases used in [3], as well as two modified version of

10 The form of the constraint is due upward closure properties of the robustness prob-
lem.

11 Proving that a system is non-robust requires proving feasibility of infinite traces for
ever decreasing ε. We have developed some techniques to do so but this is outside of
the scope of this paper.

12 We compare with the EFSynth-algorithm in the Imitator tool as this yielded the
lowest computation time in the two terminating instances.
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Test Imitator rttar

Sched2.50.0 201.95 1656.00

Sched2.100.0 225.07 656.26

A1 DNF 0.1

fischer 2 DNF 0.23

fischer 4 DNF 40.13

fischer 2 robust DNF 0.38

fischer 4 robust DNF 118.11

Table 3: Results for parameter-
synthesis comparing rttar with
Imitator. Time is given in seconds.
DNF marks that the tool did not
complete the computation within an
hour.

Fig. 5: A Uppaal template for a sin-
gle process in Fischers Algorithm. The
variables e, a and b are parameters for
ε, lower and upper bounds for clock-
values respectively.

Fischers Protocol, shown in Fig. 5. In the first version we replace the constants
in the model with parameters. In the second version (marked by robust), we wish
to compute an expression, that given an arbitrary upper and lower bound yields
the robustness of the system – in the same style as the experiments presented
in Section 5, but here for arbitrary guard-values.

As illustrated by Table 3 the performance of rttar is slower than Imitator
when Imitator is able to compute the results. On the other hand, when using
Imitator to verify our motivating example from Fig. 1, we observe that Imi-
tator never terminates, due to the divergence of the polyhedra-computation.
This is the effect illustrated in Table 1.

When trying to synthesize the parameters for Fishers algorithm, in all cases,
Imitator times out and never computes a result. For both two and four pro-
cesses in Fishers algorithm, our tool detects that the system is safe if and only
if a < 0 ∨ b < 0 ∨ b − a > 0. Notice that a < 0 ∨ b < 0 is a trival constraint
preventing the system from doing anything. The constraint b− a > 0 is the only
useful one. Our technique provides a formal proof that the algorithm is correct
for b− a > 0.

In the same manner, our technique can compute the most general constraint
ensuring that Fishers algorithm is robust. The result of rttar algorithm is that
the system is robust iff ε ≤ 0 ∨ a < 0 ∨ b < 0 ∨ b− a− 2ε > 0 – which for ε = 0
(modulo the initial non-zero constraint on ε) reduces to the constraint-system
obtained in the non-robust case.

6 Conclusion

We have proposed a version of the trace abstraction refinement approach to real-
time programs. We have demonstrated that our semi-algorithm can be used to
solve the reachability problem for instances which are not solvable by state-of-
the-art analysis tools.

Our algorithms can handle the general class of real-time programs that com-
prises of classical models for real-time systems including timed automata, stop-
watch automata, hybrid automata and time(d) Petri nets.
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As demonstrated in Section 5, our tool is capable of solving instances of
reachability problems problems, robustness, parameter synthesis, that current
tools are incapable of handling.

For future work we would like to improve the scalability of the proposed
method, utilizing well known techniques such as extrapolations, partial order
reduction and compositional verification. Furthermore, we would like to extend
our approach from reachability to more expressive temporal logics.
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A Construction of Interpolant Automata

In this section we detail how to construct interpolant automata given an infea-
sible trace. Let us initially detail the encoding of a single untimed word as a
constraint-system.

Checking Feasibility. Given a word σ ∈ I∗, we can check whether σ is feasible
by encoding the side-effects of each instruction in σ, similar to a Static Single
Assignment (SSA) form in programming languages.

Let us define a function for constructing such a constraint-system character-
izing the feasibility of a given trace. We shall assume that constraints in β(V )
and updates in U(V ) are syntactically defined. Let P = (Q, q0, I, ∆, F ) be a real-
time program and σ ∈ I∗ be a word over I. Let V n = {xn, xnµ | x ∈ V } ∪ {δn}
be a set of variables extended with an index n ∈ N≥0. For a given constraint-
system ϕ ∈ β(V ) write ϕ[V/V n] for replacing all occurrences of V with their
indexed occurrence in V n (implying that ϕ[V/V n] ∈ β(V n)). We assume that
the relation µ ∈ U(V ) is of SSA form, and let µ[V/(V n,Vm)] be the replacement
of all occurrences of variables x ∈ V with their indexes and sub-scripted oc-
currence in V n if x is assigned to and from V m if x is read from, such that
(v ← v + w)[V/(V n,Vm)] = vnµ ← vm + wm. Given this we can now recursively
define the function Enc : I∗ → β({V n | 0 ≤ n ≤ |σ|})

Enc(ε) =True

Enc(σ.α) =Enc(σ) ∧ δn ≥ 0 ∧ ϕ[V/V n−1] ∧ δn ≥ 0 ∧ µ[V/(V nµ ,V
n−1)]

∧
∧
v∈V

vn = vnµ + ρ(v)× δn

where n = |σ| − 1 and (ϕ, µ, ρ) = α

The function Enc : I∗ → β(V N≥0) constructs a constraint-system character-
izing exactly the feasibility of a word σ:

Lemma 2. A word σ is feasible i.e., Post(True, σ) 6⊆ False iff Enc(σ) is satis-
fiable.

We shall frequently refer to such a constraints system C = Enc(σ) for some
word σ where |σ| = n as a sequence of conjunctions P0 ∧ · · · ∧Pm ∧ · · · ∧Pn = C
where Pm ∈ β(V m−1 ∪ V m) refers to the encoding of the m’th instruction, and
we shall call such an element Pm a predicate.

An example of an encoding for the real-time program A1 (Fig. 1) is given by
the predicates P0, P1, P2 (Equation (P0)–(P2)). The variables xk, yk, zk denote
the values of x, y, z after k steps (initially the variables can have arbitrary values).
The sequence i.t0.t2 is feasible iff P0 ∧ P1 ∧ P2 is satisfiable.

From such a sequence we can use interpolating SMT-solvers to construct a
sequence of craig-interpolants – this procedure is discussed in more detail in
Section 4.
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The IA Algorithm. From a sequence of interpolants, we can generalize the
trace in the following manner. Let I0, . . . Ik be interpolants for the constraint-
system P0 ∧ · · · ∧ Pk+1 = Enc(σ) for some word σ where k = |σ| − 1 and let
A = (Q, q0, Σ,∆, F ) be the automata description of our Real Time Program.
Then we can construct an interpolant automaton AI = (QI , qI0 , Σ

I , ∆I , F I) s.t.
σ ∈ L(AI) and for all σ′ ∈ L(AI) we have that σ′ is infeasible.

Let Q = {True,False, I0, . . . , Ik}, q0 = True, ΣI = Σ, F = {False}, then we
let the transition-function be defined as follows.

1. (True, σ[0], I0) ∈ ∆I ,

2. (Ik, σ[k],False) ∈ ∆I ,

3. (In−1, σ[n− 1], ln) ∈ ∆I for 1 < n ≤ k, and

4. for each 1 ≤ n,m ≤ k, if Im ⊂V In then (In−1, σ[n− 1], Im) ∈ ∆I where ⊂V
is subset-checking, modulo variable indexing.

The above construction gives us the algorithm IA for constructing interpolant
automata from a trace σ.

Lemma 3 (Interpolants). Let σ be an infeasible word over P , then for all
σ′ ∈ L(IA(σ)), σ′ is infeasible.

We can verify that the construction using rules 1-3 is correct as these come
directly from the feasibility-check of the trace and the definition of interpolants.

The pumping-rule (rule 4) utilizes that if by firing some transition labeled α
from some interpolant In−1 gives us a “stronger” argument for infeasibility than
in Im, then surely every sequence which is infeasible from Im is also infeasible
from In−1 after firing α.

B Parameter Synthesis

In this section we show how to use the trace abstraction refinement algorithm
presented in Section 4 to synthesise good initial values for some of the program
variables. Given a real-time program P , the objective is to determine a set of
initial valuations I ⊆ [V → R] such that, when we start the program in I, P
does not accept any timed word.

Given a constraint I ∈ β(V ), we define the associated assume guard-transformer
for instructions that for a letter α = (γ, ρ, µ) defines Assume(α, I) = (γ′, ρ, µ) s.t.
γ = γ∧I. Let P = (Q, ι, I, ∆, F ) be a real-time program. Then we can define the
real-time program Assume(I).P = (Q, ι, I, (∆\{(ι, i, q0)})∪{(ι,Assume(i, I), q0)}, F ).

Safe Initial Set Problem. The safe initial state problem asks the following:

Given a real-time program P , is there I ∈ β(V ) s.t. T L(Assume(I).P ) =
∅?
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Semi-Algorithm for the Safe Initial State Problem. Let w ∈ L(P ).
When Enc(w) is satisfiable, we define the (existentially quantified) constraint
∃Vars(Enc(w)) \ V−1.Enc(w) i.e., the projection of the set of solutions on the
initial values of the variables. We let ∃i(w) be ∃Vars(Enc(w))\V−1.Enc(w) with
all the free occurrences of x−1 replaced by x (remove index for each var). ∃i(w)
is a contraint over the set of variables V (and existential quantifiers)13.

1: T L(Assume(I).P ) = ∅?

I

I := True

2: I := I ∧ ¬∃iEnc(σ)

Yes

No
Let σ ∈ T L(Assume(I).P )

Fig. 6: Semi-algorithm SafeInit .

The Algorithm in Fig. 6 works as follows:

1. initially I = True;
2. using the algorithm from Figure 3, test if T L(Assume(I).P ) is empty – if so
P does not accept any timed word when we start from JIK.

3. Otherwise, there is a witness word σ ∈ Unt(T L(Assume(I).P )), implying
that I ∧ Enc(σ) is satisfiable. We can then determine a sufficient condition
∃i(σ) to be feasible when starting the program from ∃i(Enc(σ)). We therefore
strengthen the constraint I (step 2).

Algorithm SafeInit when it terminates, computes the maximal constraint I for
which T L(Assume(I).P ) = ∅. This is a consequence of Theorem 2:

Theorem 2. If algorithm SafeInit terminates and outputs I, then for any I ′ ∈
β(V ), T L(Assume(I ′).P ) = ∅ if and only if I ′ ⊆ I.

Proof (=⇒). Let us assume by contraposition that upon termination we have
T L(Assume(I).P ) 6= ∅. This contradicts either the termination criterion of the
algorithm from Figure 3 or the termination criterion of the algorithm presented
in Figure 6. ut

Proof (⇐=). Let us assume by contraposition that upon termination there exists
some I ′ 6= ∅ for which I ′∩I = ∅ and T L(Assume(I ′).P ) = ∅. Then let us prove
inductively that no such I ′ can ever exist.

13 Existential quantification for the theory of Liniear Real Arithmetic is within the
theory via Fourier–Motzkin-elimination – hence the solver only needs support for
Linear Real Arithmetic for Parameter Synthesis for Stopwatch and Timed Automata.
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In the base-case in step 1, if the algorithm terminates, clearly I ′ = ∅ con-
tradicting our requirements for the contraposition.

For our contraposition to be valid, we must instead look at how we modify
I in step 2. For I ′ to exist, the quantification over parameter-values for σ must
construct a larger-than-needed set of parameter value, i.e., that I ′ ∈ ¬∃iEnc(σ).
This contradicts the definition of existential quantification. As we never over-
approximate the parameter-set needed for the valuation in step 2, we can con-
clude that I ′ cannot exist. ut
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