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Abstract. The Deposit Smart Contract (DSC) is an instrumental com-
ponent of the Ethereum 2.0 Phase 0 infrastructure. We have developed
the first machine-checkable version of the incremental Merkle tree algo-
rithm used in the DSC. We present our new and original correctness
proof of the algorithm along with the Dafny machine-checkable version.
The main results are: 1) a new proof of total correctness; 2) a software
artefact with the proof in the form of the complete Dafny code base and
3) new provably correct optimisations of the algorithm.

1 Introduction

Blockchain-based decentralised platforms process transactions between parties
and record them in an immutable distributed ledger. Those platforms were once
limited to handle simple transactions but the next generation of platforms will
routinely run decentralised applications (DApps) that enable users to make com-
plex transactions (sell a car, a house or more broadly, swap assets) without the
need for an institutional or governmental trusted third-party.

Smart Contracts. More precisely, the transactions are programmatically per-
formed by programs called smart contracts. If there are real advantages having
smart contracts act as third-parties to process transactions, there are also lots
of risks that are inherent to computer programs: they can contain bugs. Bugs
can trigger runtime errors like division by zero or array-out-of-bounds. In a net-
worked environment these types of vulnerabilities can be exploited by malicious
attackers over the network to disrupt or take control of the computer system.
Other types of bugs can also compromise the business logic of a system, e.g., an
implementation may contain subtle errors (e.g., using a += operator in C instead
of =+) that make them deviate from the initial intended specifications.
Unfortunately it is extremely hard to guarantee that programs and hence-
forth smart contracts implement the correct business logics, that they are free of
common runtime errors, or that they never run into a non-terminating computa-
tionE| There are notorious examples of smart contract vulnerabilities that have

! In the Ethereum ecosystem, programs can only use a limited amount of resources,
determined by the gas limit. So one could argue that non-terminating computations
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been exploited and publicly reported: in 2016, a reentrance vulnerability in the
Decentralised Autonomous Organisation (DAO) smart contract was exploited
to steal more than USD50 Million. There may be several non officially reported
similar attacks that have resulted in the loss of assets.

The Deposit Smart Contract in Ethereum 2.0. The next generation of
Ethereum-based networks, Ethereum 2.0, features a new proof-of-stake consen-
sus protocol. Instead of miners used in Ethereum 1.x, the new protocol relies
on validators to create and validate blocks of transactions that are added to the
ledger. The protocol is designed to be fault-tolerant to up to 2/3 of Byzantine
(i.e., malicious or dishonest) validators. To discourage validators to deviate from
an honest behaviour, they have to stake some assets in Ether (a crypto-currency),
and if they are dishonest they can be slashed and lose (part of) their stake. The
process of staking is handled by the Deposit Smart Contract (DSC): a validator
sends a transaction (“stake some Ether”) by calling the DSC. The DSC has a
state and can update/record the history of deposits that have occurred so far.

As aresult the DSC is a mission-critical component of Ethereum 2.0, and any
errors/crashes could result in inaccurate tracking of the deposits or downtime
which in turn may compromise the integrity/availability of the whole system.

This could be mitigated if the DSC was a simple piece of code, but, for
performance reasons, it relies on sophisticated data structures and algorithms to
maintain the list of deposits so that they can be communicated over the network
efficiently: the history of deposits is summarised as a unique number, a hash,
computed using a Merkle (or Hash) tree. The tree is built incrementally using
the so-called incremental Merkle tree algorithm, and as stated in [21]:

“The efficient incremental algorithm leads to the DSC implementation
being unintuitive, and makes it non-trivial to ensure its correctness.”

Related Work. In this context, it is not surprising that substantial efforts, au-
diting, reviewing [3], testing and formal verification [20/21] has been invested to
guarantee the reliability and integrity (e.g., resilience to potential attacks) of the
DSC. The DSC has been the focus of an end-to-end analysis [21], including the
bytecodeﬂ that is executed on the Ethereum Virtual Machine (EVM). However,
the incremental Merkle tree algorithm has not been mechanically verified yet,
even though a pen and paper proof has been proposed [20] and partially mecha-
nised using the K-framework [5]. An example of the limitations of the mechanised
part of the proof in [20] is that it does not contain a formal (K-)definition of
Merkle trees. The mechanised sections (lemmas 7 and 9) pertain to some in-
variants of the algorithm but not to a proper correctness specification based on
Merkle trees. The K-framework and KEVM, the formalisation of the EVM in

are not problematic as they cannot arise: when the gas limit is reached a computation
is aborted and has no side effects. It follows that a non-terminating computation (say
an infinite loop due to a programming error) combined with a finite gas limit will
abort and will result in the system being unable to successfully process some or all
valid transactions and this is a serious issue.

2 A limitation is that the bytecode is proved using a non-trusted manual specification.
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K, has been used to analyse a number of other smart contracts [25]. There are
several techniques and tool&E| e.g., [BOTIGI28], for auditing and analysing smart
contracts written in Solidity (a popular language to write Ethereum smart con-
tracts) or EVM bytecode, but they offer limited capabilities to verify complex
functional requirements.

Interesting properties of incremental Merkle trees were established in [19]
using the MONA prover. This work does not prove the algorithms in the DSC
which are designed to minimise gas consumption and hence split into parts:
insert a value in a tree, and compute the root hash. Moreover, some key lemmas
in the proofs could not be discharged by MONA.

The gold standard in program correctness is a complete logical proof that
can be mechanically checked by a prover. This is the problem we address in
this paper: to design a machine-checkable proof for the DSC algorithms (not
the bytecode) using the Dafny language and verifier. The DSC has been de-
ployed in November 2020. To the best of our knowledge, our analysis, completed
in October 2020, provided the first fully mechanised proof that the code logic
was correct, and free of runtime errors. There seem to be few comparable case-
studies of Dafny-verified (or other verification-aware programming languages
like Whiley [23]) code bases. The most notorious and complex one is proba-
bly the IronFleet/IronClad [I0] distributed system, along with some non-trivial
algorithms like DPLL [2] or Red-Black trees [24], or operating systems, FreeR-
TOS scheduler [16], and ExpressOS [15]. Other proof assistants like Coq [22],
Isabelle/HOL [I§] or Lean [I7] have also been extensively used to write machine-
checkable proofs of algorithms [I2I27726] and software systems [I11T4].

Our Contribution. We present a thorough analysis of the incremental Merkle
tree algorithm used in the DSC. Our results are available as software artefacts,
written using the CAV-awarded Dafnyﬂ verification-aware programming lan-
guage [13]. This provides a self-contained machine checkable and reproducible
proof of the DSC algorithms. Our contribution is many-fold and includes:

— a new original simple proof of the incremental Merkle tree algorithm. In
contrast to the previous non-mechanised proof in [20] we do not attempt to
directly prove the existing algorithm, but rather to design and refine it. Our
proof is parametric in the height of the tree, and hash functions;

— a logical specification using a formal definition of Merkle trees, and a new
functional version of the algorithm that is proved correct against this speci-
fication; the functional version is used to specify the invariants for the proof
of the imperative original version [4] of the algorithm;

—a repositoryEI with the complete Dafny source code of the specification, the
algorithms and the proofs, and comprehensive documentation;

— some new provably correct simplifications/optimisations;

— some reflections on the practicality of using a verification-aware program-
ming language like Dafny and some lessons learned from this experience.

3 Inttps: / /github.com /leonardoalt /ethereum_formal_verification_overview!
4 |nttps: //github.com /dafny-lang/dafny
% Ihttps://github.com/ConsenSys/deposit-sc-dafny


https://github.com/leonardoalt/ethereum_formal_verification_overview
https://github.com/dafny-lang/dafny
https://github.com/ConsenSys/deposit-sc-dafny
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2 Incremental Merkle Trees

Merkle Trees. A complete (or perfect) binary tree is such that each non-leaf
node has exactly two children, and the two children have the same height. An
example of a complete binary tree is given in Fig. [I} A Merkle (or hash) tree is
a complete binary tree the nodes of which are decorated with hashes (fixed-size
bit-vectors). The hash values of the leaves are given and the hash values of the
internal (non-leaf) nodes are computed by combining the values of their children
with a binary function hash. It follows that a Merkle tree is a complete binary
tree decorated with a synthesised attribute defined by a binary function.
Merkle trees are often used in distributed ledger systems to define a property
of a collection of elements e.g., a list L of values. This property can then be used
instead of the collection itself to verifyﬁ using a mechanism called Merkle proofs,
that data received from a node in the distributed system is not corrupted. This is
a crucial optimisation as the size of the collection is usually large (typically up to
232) and using a compact representation is instrumental to obtain time and space
efficient communication and a reasonable transactions’ processing throughput.

In this work, we are not concerned with Merkle proofs but rather with
the (efficient) computation of the hash attribute on a Merkle tree.

The actual function used to compute the values of the internal nodes is not re-
levant in the incremental Merkle tree algorithms’ functional logics and without
loss of generality we may treat it as a parameter i.e., a given binary function[]
In the sequel we assume that the decorations of the nodes are integers, and
we use in the examples a simple function hash : Int x Int — Int defined by
hash(z,y) = x — y — 1 instead of an actual (e.g., sha256-based) hash function.

Properties of Lists with Merkle Trees. A complete binary tree of heightﬁ
h has 2" leaves and 2"*! — 1 nodes. Given a list L of integers (type Int) of size
|L| = 2", we let T(L) be the Merkle tree for L: the values of the leaves of T/(L),
from left to right, are the elements of L and T'(L) is attributed with the hash
function. The value of the attribute at the root of T'(L), the root hash, defines a
property of the list L. It is straightforward to extend this definition to lists L of
size |L| < 2" by right-padding the list with zeroes (or any other default values.)
Given a list L of size |L| < 2", let L denote L right-padded with 2" — | L| default

values. The Merkle tree associated with L is T'(L), and the root hash of L is the

root hash of T'(L). Computing the root hash of a tree T'(L) requires to traverse
all the nodes of the tree and thus is exponential in the height of the tree.

The Incremental Merkle Tree Problem. A typical use case of a Merkle
tree in the context of Ethereum 2.0 is to represent properties of lists that grow
monotonically. In the DSC, a Merkle tree is used to record the list of validators

8 More precisely the verification result holds with high probability as the chosen hash-
ing functions may (rarely) generate collisions.

" In the code base, the hash function is uninterpreted and its type is generic.

8 The height is the length of the longest path from the root to any leaf.
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and their stakes or deposits. A compact representation of this list, as the root
hash of a Merkle tree, is communicated to the nodes in the network rather than
the tree (or list) itself. However, as mentioned before, each time a new deposit is
appended to the list, computing the new root hash using a standard synthesised-
attribute computation algorithm requires exponential time in h. This is clearly
impractical in a distributed system like Ethereum in which the height of the tree
is 32 and the number of nodes is 233 — 1.

Given (a tree height) h > 0, L a list with |L| < 2", and e a new element to
add to L, the incremental Merkle tree problem (IMTP) is defined as followsﬂ

Can we find a(L) a polynomial-space abstraction of T(L) such that
we can compute in polynomial-time: 1) the root hash of T(L) from
a(L), and 2) the abstraction o(L + [e]) from a(L) and e?

Linear-time/space algorithms to solve the IMTP were originally proposed by V.
Buterin in [4]. However, the correctness of these algorithms is not obvious. In
the next section, we analyse the IMTP, and we present the main properties that
enable us to design polynomial-time recursive algorithms and to verify them.

3 Recursive Incremental Merkle Tree Algorithm

In this section we present the main ideas of the recursive algorithms to insert a
new value in a Merkle tree and to compute the new root hash (after a new value
in inserted) by re-using (dynamic programming) previously computed results.

b2 = -8

v(1.0.0) v(1.0.1)

Fig. 1. A Merkle tree of height 3 for list Ly = [3,6,2, —2, 4] and hash(z,y) = z—y—1.
The green path 7 is encoded as 1.0.0 (from root to leaf) and the blue path 72 as 1.0.1.
The left and right siblings of m; are shaded. The values of the right siblings of m at
levels 0 and 1 are z[0] = zero” = 0 and z[1] = zero' = hash(0,0) = —1. i and i; are
arbitrary values.

9 Polynomial in the height of the tree h. The operator + is list concatenation.
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Notations. A path m from the root of a tree to a node can be defined as a
sequence of bits (left or right) in {0, 1}*. In a Merkle tree of height h, the length,
||, of 7 is at most h. v(m) is the node at the end of 7. If |x| = h then v(x) is a
leaf. For instance v(¢) is the root of the tree, v(0) in Fig. [1|is the node carrying
the value —8 and v(1.0.0) is a leaf. The right sibling of a left node of the form
v(m.0) is the node v(m.1). Left siblings are defined symmetrically. A node in a
Merkle tree is associated with a level which is the distance from the node to a
leaf in the tree. Leaves are at level 0 and the root is at level h. In a Merkle tree,
level 0 has 2" leaves that can be indexed left to right from 0 to 2" — 1. The n-th
leaf of the tree for 0 < n < 2h ig the leaf at index n.

Computation of the Root Hash on a Path. We first show that the root
hash can be computed if we know the values of the siblings of the nodes on any
path, and the value at the end of the path. For instance, if we know the values
of the left and right siblings (shaded nodes in Fig. [1)) of the nodes on m; (green
path in Fig. , and the value at the end of 7wy, we can compute the root hash
of the tree by propagating upwards the attribute hash. The value of the hash
attribute at v(1.0) is hash(4,v(1.0.1)) = 3, at v(1) it is hash(3,7(1.1)) = 3 and
at the root hash(v(0),v(1)) = hash(-8,3) = —12.

Listing A.1. Recursive Algorithm to Compute the Root Hash.

computeRootUp(p: bit>, left: ,right: ,seed : ):
requires |p left right| // ~vectors have the same sizes
decreases p
{
if |p 0 then seed
else if (p) 0 then // node at end of p is a left node
computeRootUp ( (p), (left), (right), hash(seed, (right)))
else // node at end of p is a right node
computeRootUp ( (p), (left), (right), hash( (left), seed))
}

Algorithm computeRootUp (Listing computeﬂ bottom-up in time lin-
ear in |p| the root hash with left the list of values of the left siblings (top-down)
on a path p (top-down), right the values of the right siblings (top-down) and
seed the value at v(p). The generic version (uninterpreted hash function) of the
algorithm is provided in the |ComputeRootPath.dfy file.

For the green path pi; = [1,0,0] in Fig. (1} left = [-8,41,%0], right =
[-1,—1,0] and the seed is 4. The evaluation of computeRootUp returns —12.

Given a path =, if the leaves on the right of v(m) all have the default value
0, the values of the right siblings on the path 7 only depend on the level of the
sibling in the tree. For example, the leaves on the right of 7, (orange in Fig. (1)) all
have the default value 0. The root hash of a tree in which all the leaves have the
same default value only depends on the level of the root: 0 at level 0, hash(0,0)
at level 1, hash(hash(0, 0), hash(0, 0)) at level 2 and so on. Let zero! be defined
by: zero' = 0 if [ = 0 else hash(zero} ', zero} ).

Y Forl =1+x,1ast(l) = z, init(l) = I/, and for | = x+1’, first(l) = z, tail(l) = I'.


https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/synthattribute/ComputeRootPath.dfy#L57
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Given a path m, if all the leaves on the right of v(m) have the default

value, any right sibling value at level | on 7 is equal to zero'.

As an example in Fig. [1] the right siblings on 71 = 1.0.0 have values 0 at level 0,
node v(1.0.1), and hash(0,0) = zero! = —1 at level 1, node v(1.1). If a path p
leads to a node with the default value 0 and all the leaves right of v(p) have the
default value 0, the root hash depends only on the values of the left and default
right siblings. Hence the root hash can be obtained by computeRootUp(p,
left, right, 0). For the path pi2 = [1,0, 1] (Fig. , left = [-8,41,4] and
right = [—1,—1,0], computeRootUp(pi2, left, right, 0) returns —12.

As a result, to compute the root hash of a tree T(L), we can use a compact
abstraction «(L) of T(L) composed of the left siblings vector b and the right
siblings default values z (Fig.[l)) of the path to the |L|-th leaf in T(L).

Insertion: Update the Left Siblings. Assume 7 is a path to the n-th leaf
and n < 2" — 1 (not the last leaf), where the next value v is to be inserted. As
we have shown before, if we have b; holding the values of left siblings of 71, 2
and v, we can compute the new attribute values of the nodes on 7y and the new
root hash after v is inserted. Let w5 be the path to the n + 1-th leaf. If we can
compute the values by of the left siblings of 75 as a function of b1, z and v, we
have an efficient algorithm to incrementally compute the root hash of a Merkle
tree: we keep track of the values of the left siblings b on the path to the next
available leaf, and iterate this process each time a new value is inserted.

As v(my) is not the last leaf, 71 must contain at least one 0, and has the
for 7 = w.0.1% with w € {0,1}*,k > 0. Hence, the path w5 to the n + 1-th
leaf is w.1.0%, arithmetically mp = 7 + 1. An example of two consecutive paths
is given in Fig. [I| with m; (green) and 7 (blue) to the leaves at indices 4 and 5.

The related forms of 7; (a path) and 72 (the successor path) are useful to
figure out how to incrementally compute the left siblings vector by for ms:

— as the initial prefix w is the same in 7; and 75, the values of the left siblings
on the nodes of w are the same in by and bo;

— all the nodes in the suffix 0¥ of my are left nodes and have right siblings. It
follows that the corresponding k values in by are irrelevant as they correspond
to right siblings, and we can re-use the corresponding by values;

— hence by is equal to by except possibly for the level of the node at v(w.0).

We now illustrate how to compute the new value in the vector by on the example
of Fig. |1} Let m; = w.0 and 72 = w.1 with w = 1.0 and |w| = 2. For the top
levels 2 and 1, by is the same as by: b3[2] = b1[2] = —8 and ba[1] = by1[1] = 41. For
level 0, the level of the node v(w.0), the value at v(w.0) = v(1.0.0) becomes the
left sibling of the node (1.0.1) on 7, at this level. So the new value of the left
sibling on 75 is exactly the new value, 4, of the node v(1.0.0) after 4 is inserted.

More generally, when computing the new root hash bottom-up on 7, the
first time we encounter a left node, at level d, we update the corresponding
value of b with the computed value of the attribute on 7y at level d. AlgorithIrH

1 2k & € {0,1} denotes the sequence of k z’s.

12 4 gtands for list concatenation.
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insertValue in Listing [A:2] computes, in linear-time, the list of values of the
left siblings (top-down) of the path p + 1 using as input the list (top-down) of
values left (resp. right) siblings left (resp. right) of p and seed the new value
inserted at v(p). The generic (non-interpreted hash) algorithm is provided in the
NextPathInCompleteTreesLemmas.dfy file.

Listing A.2. Recursive Algorithm to Compute the New Left Siblings.

insertValue(p: bit>, left: ,right: ,seed : ):
requires |left right p 1
decreases p
{
if |p 1 then // note that (p) (p) in this case
if (p) 0 then [seed] else left
else if (p) 0 then // we encounter a left node. Stop recursion.

(left) + [seed]
else // right node,move up on the path.
insertValue ( (p), (left), (right), hash( (left), seed))
+ [ (left)]

We illustrate how the algorithm insertValue works with the example of
Fig. Assume we insert the seed 4 at the end of the (green) path pil =
[1,0,0]. The left (resp. right) siblings’ values are given by left = [—8,11, o]
(resp. right = [—1,—1,0]). insertValue computes the values of the left sib-
lings on the (blue) path pi2 = [1,0,1] after 4 is inserted at the end of m1: the
first call terminates the algorithm and returns [—8, 41, 4] which is the list of left
siblings that are needed on .

In the next section we describe how to verify the recursive algorithms and
the versions implemented in the DSC.

4 Verification of the Algorithms

In order to verify the implemented (imperative style/Solidity) versions of the
algorithms of the DSC, we first prove total correctness of the recursive versions
(Section |3) and them use them to prove the code implemented in the DSC.

In this section, the Dafny code has been simplified and sometimes even
altered while retaining the main features, for the sake of clarity. The code
in this section may mot compile. We provide the links to the files with
the full code in the text and refer the reader to those files.

Correctness Specification. The (partial) correctness of our algorithms re-
duces to checking that they compute the same values as the ones obtained with
a synthesised attribute on a Merkle tree. We have specified the data types Tree,
MerkleTree and CompleteTrees and the relation between Merkle trees and lists
of values. The defintions are provided in the trees| folder.

The root hash of a MerkleTree t is t.rootv. The (specification) function
buildMerkle(h, L, hash) returns a MerkleTree of height h, the leaves of


https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/paths/NextPathInCompleteTreesLemmas.dfy#L101
https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/paths/NextPathInCompleteTreesLemmas.dfy#L101https://github.com/ConsenSys/deposit-sc-dafny/tree/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/trees
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which are given by the values (right-padded) L, and the values on the inter-
nal nodes agree with the definition of the synthesised attribute hash, i.e., what
we previously defined in Section [2[ as T'(L). It follows that buildMerkle(h, L,
hash) .rootv is the value of the root hash of a Merkle tree with leaves L.

Total Correctness. The total correctness proof for the computeRootUp func-
tion amounts to showing that 1) the algorithm always terminates and 2) the
result of the computation is the same as the hash of the root of the tree. In
Dafny, to prove termination, we need to provide a ranking function (strictly de-
creasing and bounded from below.) The length of the path p is a suitable ranking
function (see the decreases clause in Listing and is enough for Dafny to
prove termination of computeRootUp.

We establish property 2) by proving a lemma (Listing: the pre-conditions
(requires) of the lemma are the assumptions, and the post-conditions (ensures)
the intended property. The body of the lemma (with a non-interpreted hash
function) which provides the machine-checkable proof is available in the |com-
puteRootPath.dfy| file.

Listing A.3. Correctness Proof Specification for ComputeRootUp.

lemma computeRootUplsCorrectForTree(

p: bit>,r:Tree Jleft: ,right: ,seed: )
// size of p is the height of the tree r
requires |p height(r)

// r is a Merkle tree for attribute hash

requires isCompleteTree(r)

requires isDecoratedWith (hash, r)

// the value at the end of the path p in r is seed

requires seed nodeAt(p,r).v
// vectors of same sizes
requires |right left p

// Left and right contain values of left and right siblings of p in r.
requires forall i :: 0 i p
// the value of the sibling of the node at p[..i] in r
siblingValueAt(p,r,i + 1)
// are stored in left and right

if p[i] 0 then right[i] else left[i]
// Main property: computeRootUp computes the hash of the root of r
ensures r.rootv computeRootUp(p, left ,right ,seed)

Lemma computeRootUpIsCorrectForTree requires that the tree r is a Merkle
tree, and that the lists left (resp. right) store the values of left (resp. right)
siblings of the nodes on a path p. Moreover, the value at the end of p should be
seed. Under these assumptions the conclusion (ensures) is that computeRootUp
returns the value of the root hash of r.

The proof of lemma computeRootUpIsCorrectForTree requires a few inter-
mediate sub-lemmas of moderate difficulty. The main step in the proof is to
establish an equivalence between a bottom-up computation computeRootUp and
the top-down definition of (attributed) Merkle trees. All the proofs are by in-
duction on the tree or the path. The complete Dafny code for this algorithm is
available in computeRootPath.dfy file.


https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/synthattribute/ComputeRootPath.dfy#L85
https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/synthattribute/ComputeRootPath.dfy#L85
https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/synthattribute/ComputeRootPath.dfy
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Termination for insertValue is proved by using a ranking function (de-
creases clause in Listing[A.2]). The functional correctness of insertValue reduces
to proving that, assuming left (resp. right) contains the values of the left (resp.
right) siblings of the nodes on p, then insertValue(p, left, right, seed)
returns the values of the nodes that are left siblings on the successor path. The
code for this lemma is in the NextPathInCompleteTreesLemmas.dfy file. The
main proof is based on several sub-lemmas that are not hard conceptually but
cannot be easily discharged using solely the built-in Dafny induction strategies.
They require some intermediate proof hints (verified calculations) to deal with
all the nodes on the path p.

Listing A.4. ComputeRootUpWithIndex.

computeRootUpWithlndex (

h:nat,k:nat, left: ,right: ,seed : ):

requires |left right h

// the index is in the range of indices for a tree of height h

requires k power2(h)

// Indexed algorithm computes the same value as computeRootUp

ensures computeRootUpWithindex(h,k, left ,right ,f, 6 seed)
// mnatToBitList(k,h) is the binary encoding of k over h bits
computeRootUp(natToBitList(k,h),left ,right ,f, 6 seed)

// ranking function

decreases h

{
if h 0 then seed
else if k % 2 0 then // 1left node
computeRootUpWithlndex(h—1,k/2, (left), (right), hash(seed, (right)))
else // right node
computeRootUpWithlndex (h—1,k/2, (left), (right),hash( (left),seed))
}

Index Based Algorithms. The algorithms that implement the DSC do not
use a bitvector to encode a path, but rather, a counter that records the num-
ber of values inserted so far and the height of the tree. In order to prove the
algorithms actually implemented in the DSC, we first recast the computeRootUp
and insertValue algorithms to use a counter and the height h of a tree. In this
step, we use a parameter k that is the index of the next available leaf where a
new value can be inserted. The leaves are indexed left to right from 0 to 2" — 1
and hence k is the number of values that have been inserted so far. It follows
that the leaves with indices k < i < 2P — 1 have the default value. The cor-
respondence between the bitvector encoding of the path to the leaf at index k
and the value k is straightforward: the encoding of the path p is the value of k
in binary over h bits. We can rewrite left computeRootUp to use use k and h
(computeRootUpWithIndex, Listing and prove it computes the same value
as computeRootUp. A similar proof can be established for the insertValue al-
gorithm. The index based algorithms and the proofs that they are equivalent
(compute the same values as) to computeRootUp and insertValue are available
in the IndexBasedAlgorithm.dfy|file. Dafny can discharge the equivalence proofs
with minimal proof hints using the builtin induction strategies.


https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/paths/NextPathInCompleteTreesLemmas.dfy
https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/algorithms/IndexBasedAlgorithm.dfy
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Total Correctness of the Algorithms Implemented in the DSC. In this
section we present the final proof of (total) correctness for the algorithms im-
plemented in the DSC (Solidity-like version.) Our proof establishes that the im-
perative versions, with while loops and dynamic memory allocation (for arrays)
are correct, terminate and are memory safe.

The DSC is an object and has a state defined by a few variables: count
is the number of inserted values (initially zero), branch is a vector that stores
that value of the left siblings of the path leading to the leaf at index count,
and zero_hashes is what we previously defined as z. The algorithm that com-
putes the root hash of the Merkle tree in the DSC is get_deposit_root().
get_deposit_root () does not have any seed parameter as it computes the root
hash using the default value (0). The correctness proof of get_deposit_root()
uses the functional (proved correct) algorithm computeRootUpWithIndex as an
invariant. Listing is a simplified version (for clarity) of the full code available
in the [DepositSmart.dfy! file.

Listing A.5. Implemented Version of computeRootUp.

method get_deposit_root() returns (r: )
// The result of get_deposit_root_() is the root value of the Merkle tree
// values is a ghost variable and records all the inserted values

ensures r buildMerkle (values , TREE_HEIGHT , hash ). rootv

// Store the expected result in a ghost variable.

ghost var e computeRootUpWithIndex (TREE_LHEIGHT , count , branch , zero_hashes ,0);
// Start with default value for r.

r 0;

var h 0;

var size count;

while h TREE_HEIGHT

// Main invariant:

invariant e computeRootUpWithlndex (
TREE_HEIGHT — h,size ,
(branch , TREE_HEIGHT — h), (zero_hashes , TREE_.HEIGHT — h),r)
{
if size % 2 1 {
r hash (branch[h],r);
} else {
r hash(r,zero_hashes[h]);
}
size size / 2;
h h + 1;
}
}

The algorithm that inserts a value v in the tree is deposit (v) in the imple-
mented version of the DSC. Listing [A.6] is an optimised version of the original
algorithm. The simplification is explained in Section [5] The correctness of the
algorithm is defined by ensuring that, if at the beginning of the computation
the vectors branch (resp, zero_hashes) contain values of the left (resp. right)
siblings of the path leading to the leaf at index count, then at the end of the
computation, after v is inserted, this property still holds. The proof of this invari-


https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/DepositSmart.dfy
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ant requires a number of proof hints for Dafny to verify it. We use the functional
version of the algorithm to specify a loop invariant (not provided in Listing|A.6]).

The termination proof is easy using size as the decreasing ranking function.
However, a difficulty in this proof is memory safety, i.e. to guarantee that the
index i used to access branch[i] is within the range of the indices of branch.

We have also proved the initialisation functions init_zero_hashes() and
the DSC constructor. The full code of the imperative version of the DSC is
available in the DepositSmart.dfy file.

Listing A.6. The deposit method.

method deposit(v: )
// The tree cannot be full
requires count power2 (TREE_HEIGHT) — 1
// branch and zero_hashes hold the values of the siblings
requires areSiblingsAtindex(|values]|,
buildMerkle (values , TREE_.HEIGHT, hash),branch, zero_hashes)
// Correctness property
ensures areSiblingsAtlndex (| values|,
buildMerkle (values , TREE_.HEIGHT , hash),branch, zero_hashes)

{
var value v
var size : nat count;
var i : nat 0;
// Store the expected result in e.
ghost var e computelLeftSiblingsOnNextpathWithIndex (
TREE_HEIGHT, old (size ),old(branch),zero_hashes ,v);
while size % 2 1
// Main invariant:
invariant e
computelLeftSiblingsOnNextpathWithIndex (
TREE_HEIGHT — i, size,
(branch , TREE_HEIGHT — i),
(zero_h ,TREE_HEIGHT — i),value) + drop(branch, TREE_HEIGHT — i)
decreases size
{
value f(branch[i],value);
size size / 2;
i i+ 1;
}
// 0 i branch and no there is no index-out-of-bounds error
branch[i] value;
count count + 1;
values values + [v];
}

5 Findings and Lessons Learned

Methodology. In contrast to the previous attempts to analyse the DSC, we
have adopted a textbook approach and used standard algorithms’ design tech-
niques (e.g., dynamic programming, refinement, recursion.) This has several ad-
vantages over a direct proof (e.g., [20]) of the imperative code including:

— the design of simple algorithms and proofs;
— recursive and language-agnostic recursive versions of the algorithms;


https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/DepositSmart.dfy
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— new and provably correct simplifications/optimisations.

Algorithmic Considerations. Our implementations and formal proofs have
resulted in the identification of two previously unknown/unconfirmed optimisa-
tions. First, it is not necessary to initialise the vector of left siblings, b, and the
algorithms are correct for any initial value of this vector.

Second, the original version of the deposit algorithm (which we have proved
correct too) has the forrrﬂ given in Listing Our formal machine-checkable
proof revealedE that indeed the condition C1 is always true and the loop always
terminates because C2 eventually becomes true. As witnessed by the comment
after the loop in the Solidity code of the DSC, this property was expected but not
confirmed and the Solidity contract authors did not take the risk to simplify the
code. Our result shows that the algorithm can be simplified to while not(C2)
do ... od.

Listing A.7. Solidity Version of the DSC Deposit Function.

deposit( ... )

while C1 do

if C2 return;
od
// As the loop should always end prematurely with the ‘return‘ statement,
// this code should be unreachable. We assert ‘false"
assert(false);

just to be safe.

This is interesting not only from a safety and algorithmic perspectives, but
also because it reduces the computation cost (in gas/Ether) of executing the
deposit method. This simplification proposal is currently being discussed with
the DSC developer, however the currently deployed version still uses the non-
optimised code.

Verification Effort. The verification effort for this project is 12 person-weeks
resulting in 3500 lines of code and 1000 lines of documentation. This assumes
familiarity with program verification, Hoare logic and Dafny. Table [I} page [15]
provides some insights into the code base. Note that in Table [[] we do not report
on the verification time (e.g. time spent in Z3) as it is known to be an irrelevant
metrics in Dafny/Z3: implemented optimisations may use clever cashing hash
tables and even a name change can drastically impact the verification. What
Dafny/Z3 guarantees is that the result of the verification is the sound but not
that the verification time is stable.

The filenames in green are the ones that require the less number of hints
for Dafny to check a proof. In this set of files the hints mostly consist of simple
verified calculations (e.g., empty sequence is a neutral element for lists [] +
1 ==1+ [] == 1.) Most of the results on sequences (helpers package) and

3 The complete Solidity source code is freely available on GitHub at https://github.
- com/ethereum /eth2.0-specs/blob/dev/solidity_deposit_contract/deposit_contract.sol
** This finding was not uncovered in any of the previous audits/analyses.


https://github.com/ethereum/eth2.0-specs/blob/dev/solidity_deposit_contract/deposit_contract.sol
https://github.com/ethereum/eth2.0-specs/blob/dev/solidity_deposit_contract/deposit_contract.sol
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simplifications of sequences of bits (seqofbits package) are in this category
and require very few hints. This also applies for the proofﬂ of the algorithms
package, e.g., proving that the versions using the index of a leaf instead of the
binary encoding of a path are equivalent.

The filenames in require some non-trivial proof hints beyond the im-
plicit induction strategies built in Dafny. For instance in
and , we had to provide several annotations

and structure for the proofs. This is due to the fact that the proofs involve prop-
erties on a Merkle tree ¢; and its successor to (after a value is inserted) which
is a new tree, and on a path 7y in #; and its successor 7y in to.

The filenames in red require a lot of hints. For the files in the synthattribute
package it is mostly calculation steps. Some steps are not absolutely necessary
but adding them reduces the verification time by on order of magnitude (on
our system configuration, MacBookPro 16GBRAM). The hardest proof is prob-
ably the correctness of the deposit method in DepositSmart.dfy. The proof
requires non trivial lemmas and invariants. The difficulty stems from a com-
bination of factors: first the while loop of the algorithm (Listing main-
tains a constraint between size and i, the latter being used to access the array
elements in branch. Proving that there is no array-of-bounds error (i.e., i is
within the size of branch) requires to prove some arithmetic properties. Second,
the proof of the main invariant (Listing using the functional specification
computeLeftSiblingsOnNextpathWithIndex is complex and had to be struc-
tured around additional lemmas.

Overall, almost 90% of the lines of code are (non-executable) proofs, and
function definitions used in the proofs. The verified algorithms implemented in
the DSC functional are provided in DepositSmart.dfy and account for less than
10% of the code.

Considering the criticality of the DSC (it processes millions of ETH), 12
person-weeks can be considered a moderate effort well worth the investment:
the result is an unparalleled level of trustworthiness that can inspire confidence
in the Ethereum platform. According to our experts (ConsenSys Diligence) in
the verification of Smart Contracts, the size of such an effort is realistic and
practical considering the level of guarantees provided. The only downside is the
level of verification expertise required to design the proofs.

The trust base in our work is composed of the Dafny verification engine
(verification conditions generator) and the SMT-solver Z3.

Dafny FExperience. Dafny has excellent documentation, support for data
structures, functional (side-effect free) and object-oriented programming. The
automated verification engine has a lot of built-in strategies (e.g., induction,
calculations) and a good number of specifications are proved fully automatically
without providing any hints. The Dafny proof strategies and constructs that we

15 The file CommuteProof .dfy in this package is not needed for the main proof but was
originally used and provides an interesting result, so it is still in code base.
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mostly used are verified calculations and induction. The side-effect free proofs
seem to be handled much more efficiently (time-wise) than the proofs using
mutable data structures.

src/dafny/package/file.dfy #LoC Lemmas Methods #Doc (#Doc/#LoC in %)
smart

DepositSmart.dfy 163 141 1+3 92 56
smart/algorithms

CommuteProof.dfy 73 2 0 31 42
IndexBasedAlgorithm.dfy 96 3 2 59 61
MainAlgorithm.dfy 66 2 0 38 58
OptimalAlgorithm.dfy 24 2 0 15 62
Sub-total 259 247 2 143 55
smart/helpers

Helpers.dfy 51 5 1 10 20
SeqHelpers.dfy 137 10 6 34 25
smart/paths

NextPathInCompleteTrees.dfy 262 142 2 99 38
PathInCompleteTrees.dfy 408 24+ 13 0 60 15
Sub-total 670 3 4 15 2 159 24
smart/seqofbits

SeqOfBits.dfy 527 19 0 100 19
smart/synthattribute

ComputeRootPath.dfy 305 249 0 116 38
GenericComputation.dfy 148 6 0 75 51
RightSiblings.dfy 210 1+2+2 1 57 27
Siblings.dfy 124 141 0 31 25
SiblingsPlus.dfy 556 242 0 52 9
Sub-total 1343 44+ 44 20 1 331 25
smart/trees

CompleteTrees.dfy 89 8 1 19 21
MerkleTrees.dfy 208 6 3 101 49
Trees.dfy 91 3 5 41 45
Sub-total 388 17 9 161 41
src/dafny

TOTAL 3538 5494 94 1+ 24 1030 29

Table 1. Dafny Code Statistics. #Loc (resp. #Doc) is the number of Lines of Code
(resp. Documentation), Lemmas is the number of proofs broken down in difficulty
levels, Methods the number of executable methods/function methods. Colour scheme
easy/few proof hints, moderate, hard/detailed proof hints.

In the current version we have used the autocontracts attribute for the
DSC object which is a convenient way of proving memory safety using a specific
invariant (given by the Valid predicate). This could probably be optimised as
Dafny has some support to specify precisely the side-effects using frames (based
on dynamic framing.)

Overall, Dafny is a practical option for the verification of mission-critical
smart contracts, and a possible avenue for adoption could be to extend the
Dafny code generator engine to support Solidity, a popular language for writing
smart contracts for the Ethereum network, or to automatically translate Solidity
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into Dafny. We are currently evaluating these options with our colleagues at
ConsenSys Diligence, as well as the benefits of our technique to the analysis of
other critical smart contracts.

The software artefacts including the implementations, proofs, documentation
and a Docker container to reproduce the results are freely available as a GitHub
repository at |https://github.com/ConsenSys/deposit-sc-dafny.

Acknowledgements. 1 wish to thank Suhabe Bugrara, ConsenSys Mesh, for
helpful discussions on the DSC’s previous work and the anonymous reviewers of
a preliminary version of this paper.
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