
WUPPAAL: Computation of Worst-Case
Execution-Time for Binary Programs with

UPPAAL

Franck Cassez1, Pablo Gonzalez de Aledo1,3, and Peter Gjøl Jensen1,?

1 Macquarie University, Sydney, Australia
2 Aalborg University, Aalborg, Denmark

3 University of Cantabria, Santander, Spain

Abstract. We address the problem of computing the worst-case execu-
tion-time (WCET) of binary programs using a real-time model-checker.
In our previous work, we introduced a fully automated and modular
methodology to build a model (network of timed automata) that com-
bined a binary program and the hardware to run the program on. Com-
puting the WCET amounts to finding the longest path time-wise in this
model, which can be done using a real-time model checker like Uppaal.
In this work, we generalise the previous approach and we define a generic
framework to support arbitrary binary language and hardware.
We have implemented our new approach in an extended version of Up-
paal, called Wuppaal. Experimental results using some standard bench-
marks suite for WCET computation (from Mälardalen University) show
that our technique is practical and promising.

Keywords: binary program, control flow graph, worst-case execution-
time

1 Introduction

Embedded real-time systems (ERTS) are composed of a set of periodic tasks
(software) to run on a given architecture (hardware). The tasks are usually
released at periodic time intervals. For safety-critical ERTS, each task must be
completed by a deadline (relative to the release time). Checking whether a set of
periodic tasks can be scheduled on a processor such that they always complete
before their deadline is a schedulability analysis.

Tests for schedulability are based on the tasks’ parameters, among them an
upper bound for the execution time of each task. Over-estimating the execution
time of a task may be safe but can also result in a set of tasks being declared
non schedulable. This may lead to a choice of over-powered and over-expensive
hardware.

With the ever increasing connectivity of many devices, ERTS are also sub-
ject to malicious attacks. Some of them can make use of time measurements to

? Part of this work was done while this author visited Macquarie University.

establish communication channels (timing covert channel): private information
can be communicated or leaked to attackers by controlling/observing the time
intervals between events (e.g., how long a computation takes).

It follows that tight bounds for the execution time of the tasks are instrumen-
tal to designing safe (schedulable), efficient and secure ERTS. Each task in an
ERTS executes a program. The execution time of the program may depend on
the input. The worst-case execution-time (WCET) of the program is the supre-
mum of the execution times of the program over all the input. Computing the
WCET for binary programs is a non-trivial task for at least two reasons:

– the set of input data may be very big and simulating the program over
a subset of the input data only provides a lower bound of the worst-case
execution-time;

– the hardware that runs the program is complex (pipelined architecture,
caches) and it is effectively a timed concurrent system (e.g., the pipeline
runs in parallel with the caches and they both have timing specifications.)

The WCET problem. Given a binary program P , some input data d and the
hardwareH, the execution time of P for the input d onH, denoted Xtime(P, d,H),
is measured as the number of processor cycles between the beginning and end of
P ’s computation for d (we assume P always terminates.) The worst-case execu-
tion time (WCET) of program P on hardware H, denoted WCET(P,H), is the
supremum of the Xtime(P, d,H) for d ranging over the input data domain D:

WCET(P,H) = sup
d∈D

Xtime(P, d,H). (1)

The WCET problem asks the following:

“Given P and H, compute WCET(P,H)”.

In general, the WCET problem is undecidable because otherwise we could solve
the halting problem. However, for programs that always terminate and have
a bounded number of paths, it is computable. Indeed the possible runs of the
program can be represented by a finite tree (and there is a finite number states
for the program and the hardware). This does not mean that the problem is
tractable though: the (values of the) input data (e.g., an fixed-size array to be
sorted) are usually unknown and the number of program paths to be explored
may grow exponentially in the size of the program.

As mentioned before, programs run on increasingly complex architectures
featuring multi-stage pipelines and fast memory components like caches: they
both influence the WCET in a complicated manner. It is then a challenging prob-
lem to determine a precise WCET even for relatively small programs running
on complex single-core architectures.

Computing a precise WCET for a given program is very hard and the WCET
problem is usually re-stated as:

“Given P and H, compute a tight upper bound of WCET(P,H)”.

2

Tightness can be measured (see [9]) by comparing actual WCET to the ones
computed using a particular method. In the sequel we use WCET(P,H) to denote
an upper bound of the WCET for a given program.

Standard methods and tools for computing WCET. The survey arti-
cle [23] provides an exhaustive presentation of WCET computation techniques
and tools. A first set of methods based on simulations ([18, 5, 19]) are not suitable
for safety-critical ERTS as they only provide lower bounds for the WCET.

A second set of methods rely on the construction of a Control Flow Graph
(CFG) for the binary program to analyse, and the determination of loop bounds.
The CFG is then annotated with some timing information about the cache miss-
es/hits (some may/must analysis using abstract interpretation based techniques)
and pipeline stalls to build a finite model of the system. A final paths analysis is
carried out on this model e.g., using Integer Linear Programming (ILP). There
are many implementations of this technique, the most prominent one is probably
aiT [1, 13] which combines static analysis tools and ILP for computing WCET.

Real-time model-checking based methods for computing WCET. Con-
sidering that (i) modern architectures are composed of concurrent components
(the units of the different stages of the pipeline, the caches) and (ii) the synchro-
nisation of these components depends on timing constraints (time to execute in
one stage of the pipeline, time to fetch data from the cache), formal models
like timed automata [2] and state-of-the-art real-time model-checkers like Up-
paal [16, 3] appear well-suited to address the WCET problem.

The use of network of timed automata (NTA) and the model-checker Uppaal
for computing WCET on pipelined processors with caches was first reported
in [12, 11] where the METAMOC method is described. METAMOC consists in:
1) computing the CFG of a program, 2) composing this CFG with a (network of
timed automata) model of the processor and the caches. Computing the WCET
is then reduced to computing the longest path (time-wise) in a NTA.

The previous framework is very elegant yet has some shortcomings: (1)
METAMOC relies on a value analysis phase to compute the CFG but this may
not terminate, (2) some programs cannot be analysed (if they contain register-
indirect jumps), (3) manual annotations (loop bounds) is required on the binary
program, and (4) the unrolling of loops is not safe for some cache replacement
policies (FIFO). In our previous work [7, 9] we have reported some results on the
computation of WCET using NTA that overcome the limitations of METAMOC:
(1) we introduced an automatic method to compute a CFG and a reduced ab-
stract program equivalent WCET-wise to the original program; (2) we designed
detailed hardware formal models and (3) we evaluated the accuracy of our tech-
nique (comparison of measured execution times and the results of our analysis).

The technique we introduced in [7, 9] still has some drawbacks:

– the Uppaal model (NTA) contains the CFG of the program and the ma-
chinery that is needed to simulate some instructions (written as functions
in Uppaal); some instructions (e.g., setting the overflow flag) are partially

3

modelled because of the restricted expressiveness of the C-like operators
supported by Uppaal;

– the Uppaal model (NTA) also contains components to explicitly model the
caches as large arrays (of cache lines) which contributes a big part of the
state of the system;

– as a result, we rely on Uppaal to perform a lot of discrete computations
which is not effective; moreover, the discrete state of the Uppaal model
contains a large amount of information (e.g., the full state of the caches)
which also impacts the efficiency of the Uppaal analysis engine.

Our contribution. Based on our previous work [7, 9], we propose three new
contributions: (1) a generic framework for computing WCET which is language
agnostic; (2) a new implementation of our framework based on an extended
version Uppaal and (3) a tool chain that combines our extended Uppaal and
an off-the-shelf binary program simulator (based on gdb [22]).

Outline of the paper. In Section 2 we recall how the WCET can be computed
via model-checking. The material in this section is based on [7, 9]. In Section 3,
we introduce our new generic technique to compute the WCET of arbitrary
programs. Examples are provided for an monoprocessor pipelined ARM archi-
tecture. Section 4 provides details of the implementation of our technique, a tool
chain architecture and some experimental results.

2 Computation of WCET via real-time model-checking

In this section we introduce the basic concepts of program runs together with
an abstract model of the hardware in order to compute the execution time of a
sequence of program instructions.

Hardware. The hardware usually consists of a finite set R of registers, a multi-
stage execution pipeline and caches (e.g., instruction and data caches). It typ-
ically supports a finite set of instructions, I, e.g., mov r1,r2 is an instruction
that copies the contents of register r2 into register r1. The main memory compo-
nent is a table of words of a given width 32-bit or 64-bit words.M is the (finite)
set of main memory cells and we denote D the memory domain (e.g., 32-bit or
64-bit words). A memory state is thus a map fromM to D. The caches and the
pipeline are essential components of the hardware performance-wise but they are
not necessary to define the semantics of the instructions. We omit them for now
and will account for them later in this section. A state of the hardware is fully
determined by the contents of the registers, the contents of the memory and the
contents of the pipelines and caches. The hardware has a designated register,
the program counter that points to the next instruction to process. An example
of such an architecture, the ARM920T, is given in Fig. 1. The orange blocks are
the blocks we need to model to compute the execution time of program runs.

4

ARM9TDMI
Core

Data
Cache

Inst.
Cache

Data
MMU

Inst.
MMU

Write
Buffer

AMBA bus interface

Fig. 1: Simplified ARM920T architecture

Program runs. A binary program is a map P : P→ I, with P ⊆M, that asso-
ciates with some memory locations ` ∈ P an instruction. P (`) is the instruction
to be processed when the program counter of the hardware is at `.

Given a program P , we let LH(P) ⊆ P∗
Listing 1.1: Prog1

1 int c_entry(int a, int b){
2 int c=1,i;
3 for (i = 0; i < 10; i++) {
4 if(a < b){
5 c *= 10;
6 } else {
7 c += 10;
8 }
9 }

10 return c;
11 }

be the set of valid executions of P on H. Ac-
tually we only require LH(P) to over-appro-
ximate the set of feasible executions of the
program P . To define this set we need to take
into account the semantics of each instruc-
tion in I, and the values of the registers of
H and the memory state: this state is given
by a valuation ν : R ∪M → D. There are
usually many different possible initial states
of the hardware (e.g., a sorting program that
sorts an array of k arbitrary elements, there are Dk initial possible input data).

An example of a binary program compiled for the ARM920T is provided
in Fig. 2.a. This program can be obtained by compiling the C program Prog1
(Listing 1.1). The Control Flow Graph (CFG) is given in Fig. 2.b. The semantics
of the program does not depend on the pipeline architecture nor on the caches:
these components only impact the execution time of the program runs. However,
to ensure that the WCET of each program is well-defined, we may assume that
LH(P) is finite. Otherwise it contains arbitrary long sequences (the alphabet P
is finite) and the set of execution times is unbounded and the WCET is +∞.

5

The set LH(P) of program runs is finite but may contain more than one
trace even if the program is deterministic. For instance in Prog1 (Listing 1.1),
the values of a, b are arbitrary at the beginning of the program because they
are parameters of the function c entry. This makes the test at line 4 a non-
deterministic choice in our program over-approximation because the values of a
and b are arbitrary (there are input parameters of the c entry function). We
can over-approximate the set of runs of this program by assuming that each
time the test at line 4 is performed, the outcome is either true or false and both
cases should be taken into account to compute the WCET. Notice that this is
an over-approximation if a < b evaluates to true (resp. false) the first time
it must evaluate to true (resp. false) in the following iterations. Using this
strategy we generate a super set of the set feasible runs of Prog1.

Execution time of a run. The execution time of a run σ ∈ P∗ typically
depends on the following factors:

– the time it takes for the instructions in σ to flow into the pipeline stages.
This is usually non-trivial as the stages run in parallel. Moreover, the flow of
instructions in the successive stages of the pipeline is governed by precedence
rules: the execution of an instruction may require the availability of the
result of another instruction which may temporarily block an instruction in
a pipeline stage: this is known as a pipeline stall.

– the time it takes to fetch instructions and data from the caches and main
memory.
These memory transactions are usually performed in different pipeline stages
and can be concurrent (e.g., an instruction in the fetch stage can be fetched
from the instruction cache while another instruction in the memory stage
performs some transactions with the data cache.)

In order to determine how long it takes for a run σ ∈ P∗ to execute on the
hardware H, it is sufficient to know:

– the processing time of each instruction in the different pipeline stages,
– the registers read from/written to by each instruction (to determine pipeline

stalls),
– the status of the memory transactions for the instructions in σ: cache hits

and misses.

Given a run ρ ∈ LH(P), we can build an annotated run ρ̃ that contains the
information required to fully determine the execution time of ρ on H. This
extended run may capture the processing time of the instruction in each pipeline
stage, the registers read from/written and the cache hits and misses. We let
LaH(P) be the set of annotated runs associated with LH(P).

For example, the following run ρ = 10000.10004.10008.10014.10018 in LH(P)
can be annotated with the time it takes to process each corresponding instruction
in Prog1 (Fig. 2.b), and whether fetching the instruction (from the instruction
cache) will result in cache Hit or a cache Miss. Hence LaH(P) can be defined

6

10000 <_Reset>:
10000: e1a00000 nop
10004: e59fd004 ldr sp, [pc, #4]
10008: eb000001 bl 10014 <c_entry>
1000c: eafffffe b 1000c <_Reset+0xc>
10010: 00011090 .word 0x00011090

10014 <c_entry>:
10014: e24dd010 sub sp, sp, #16
10018: e3a03001 mov r3, #1
1001c: e58d300c str r3, [sp, #12]
10020: e3a03000 mov r3, #0
10024: e58d3008 str r3, [sp, #8]
10028: ea000010 b 10070 <c_entry+0x5c>
1002c: e59d2004 ldr r2, [sp, #4]
10030: e59d3000 ldr r3, [sp]
10034: e1520003 cmp r2, r3
10038: aa000006 bge 10058 <c_entry+0x44>
1003c: e59d200c ldr r2, [sp, #12]
10040: e1a03002 mov r3, r2
10044: e1a03103 lsl r3, r3, #2
10048: e0833002 add r3, r3, r2
1004c: e1a03083 lsl r3, r3, #1
10050: e58d300c str r3, [sp, #12]
10054: ea000002 b 10064 <c_entry+0x50>
10058: e59d300c ldr r3, [sp, #12]
1005c: e283300a add r3, r3, #10
10060: e58d300c str r3, [sp, #12]
10064: e59d3008 ldr r3, [sp, #8]
10068: e2833001 add r3, r3, #1
1006c: e58d3008 str r3, [sp, #8]
10070: e59d3008 ldr r3, [sp, #8]
10074: e3530009 cmp r3, #9
10078: daffffeb ble 1002c <c_entry+0x18>
1007c: e59d300c ldr r3, [sp, #12]
10080: e1a00003 mov r0, r3
10084: e28dd010 add sp, sp, #16
10088: e12fff1e bx lr

(a) ARM binary for Prog1

10000

10004

10008

10014

10018

1001c

10020

10024

10028

10070

10074

10078

1002c

10030

10034

10038

1007c

10080

10084

10088

10058

1005c

10060

10064

10068

1006c

1003c

10040

10044

10048

1004c

10050

10054

(b) CFG of the binary program

Fig. 2: ARM binary and corresponding CFG for Prog1

7

as sequences of pairs (k, b) ∈ N × B with the following meaning: k is the time
it takes to process the instruction at p in the execution stage (E stage) of the
pipeline; if b is true, fetching the instruction from the instruction cache results
in a Hit otherise it is a Miss. This tranformation will give an annotated run
ρ̃ = (2,true).(1, false).(2,true).(2, false).(1, false).

As mentioned earlier, it is noticeable that the hardware model needed to
compute the execution time of a run is much simpler than the actual concrete
hardware model: there is no need to model the actual processing unit (e.g., reg-
isters, memory) nor to perform actual computations (e.g., execute instructions).

Formal hardware model. As a sequence ρ̃ ∈ LaH(P) contains enough informa-
tion to compute the execution time of a program run ρ ∈ LH(P) we can define
an abstract model of the hardware as a timed automaton transducer, Aut(H),
that maps each ρ̃ ∈ LaH(P) to a positive natural number Aut(H)(ρ), which is
the execution time of ρ on H. Hence the WCET of a program P on the hardware
H is defined by:

WCET(P,H) = max
σ∈La

H(P)
Aut(H)(σ). (2)

As LaH(P) over-approximates the set of program runs, we ensure that the value of
the WCET we compute (equation (2)) is an upper bound of the actual WCET
(this assumes that the hardware model Aut(H) correctly models the timing
behaviour of the hardware).

Modular computation of the WCET of a program. In practice to compute
WCET(P,H) we need to provide a generator for LaH(P) and the model of the
hardware Aut(H). LaH(P) can be generated by a finite state automaton Aut(P)
(see [7, 9]). In general LaH(P) is a finite set of runs and can be defined by a finite
computation tree.

Program P

Aut(P)
generates La

H(P)
Finite Automaton

Semantics

Hardware H

Aut(H)
accepts La

H(P)
Timed Automaton

HDL, . . .

Synchronisation
Aut(P)×Aut(H)

WCET(H,P)

Uppaal Real-Time
Model-Checking

Fig. 3: Modular Computation of WCET

In [7, 9] the modular computation of the WCET depicted in Fig. 3 is fully
implemented in Uppaal as follows:

8

– a Uppaal automaton, Aut(P), that generates LaH(P) is computed based on
the control flow graph of a program (for an ARM architecture.)

– the hardware model is provided for a given architecture (ARM920T). It
comprises of a model of the pipeline and a model for the caches (complete
model with the current state of the caches.) Notice that our method is robust
against the so-called timing anomalies [10].

– the WCET can be computed either using a binary search or using Uppaal
sup operator.

This implementation has several drawbacks:

– the automaton Aut(P) that generates LaH(P) is implemented using a limited
C-like language. This is sometimes cumbersome and the semantics of some
instructions had to be partially modelled (e.g., some bitwise operations on
registers). The result is that the Uppaal model of the program which is a
finite automaton, is hard to encode using Uppaal restricted set of C sup-
ported operations. This set was sufficient to model a large set of instructions
of the ARM920T processor but may be too limited to model the semantics
of more complex processors.

– the FIFO caches (instruction and data) are modelled precisely using an array
to model the lines in the caches. The hardware model Aut(H) contains the
full state of the caches. This makes the discrete part of the state of the system
Aut(P)×Aut(H) very large and impacts the efficiency of the model-checking
algorithm.

In the next section we describe how to overcome the previous limitations by
having LaH(P) generated by a C-library outside Uppaal.

3 WUPPAAL

Program computation tree. In this section we assume that LaH(P) is available
and represented as a finite tree TreeaH(P). This is based on the assumption that
the number of iterations in the loops do not depend on an (arbitrary) input
parameter. This is a usual assumption4 in the WCET methods [23] as otherwise
the WCET may be unbounded. Fig. 4 shows a subtree of TreeaH(Prog1). We use
a sliced version of the binary program when we build the tree. This sliced version
is equivalent WCET-wise [9, 6] to the actual program. The components Mi in
Fig. 4 provides the values of the variables that are in the slice (some registers
and other memory cells).
The following operations can be performed on TreeaH(P):

– get init() returns the root of the tree TreeaH(P).
– get next(n) returns the list of children of the node n (empty if n is a leaf).
– hit ins(n) is a boolean that indicates whether the instruction to be executed

at n will result in a hit or a miss in the instruction cache.

4 An exact test for this assumption does not exist as this problem is undecidable.

9

pc=10000,M pc=10078,M2 pc=1002c,M2

pc=10038,M3

pc=10058,M3

pc=10060,M4

pc=10064,M5

pc=10078,M6

...

pc=1003c,M3

pc=10054,M7

pc=10064,M8

pc=10078,M9

...

Fig. 4: subtree of TreeaH(Prog1) where we let M be the memory tracked, and
r3 = 10 in M2. Dashed arrows indicate sequences of deterministic instructions
omitted for brevity.

10

– get exec(n) returns the execution (in cycles) in the E stage of the pipeline
for the instruction at n.

We refer to these operations as the tree-API in the sequel. The implementations
of the Tree-API operations live outside Uppaal in the library libgdb2uppaal

(see Section 4 for the Wuppaal architecture). The Uppaal template in Fig. 5
implements a full search on TreeaH(P) given the get init() and get next(n) func-
tions; we assume each node of the tree has at most 2 children for the sake
of simplicity. The Uppaal version of get init() is get init(succ) and fills in
the vector succ with the pair (get init(),⊥) (⊥ denotes the absence of node).
Similarly get next(n) is implemented by the function get next(n,succ) and
fills in the vector of integers succ with the children of n where succ[0] (resp.
succ[1]) is the first (resp. second) child of n; the ⊥ value is represented by
a negative integer. The non-deterministic guarded choices in the template Pro-
gram Automaton (Fig. 5) push the children nodes to be processed to the first
stage of the pipeline (see hardware model below). Each path through the tem-
plate Program Automaton from the initial location (double circle) to the END

location represents an annotated trace of LaH(P). When we model-check a safety
property on this model, Uppaal generates all the traces in LaH(P).

Fig. 5: Program Automaton to enumerate LaH(P).

Hardware specification. The hardware consists of a multi-stage execution
pipeline and the caches (e.g., instruction and data caches). As a case-study
we model an ARM920T 5-stage execution pipeline, the instruction cache and
main memory components. The pipeline can execute concurrently the different
stages (Fetch, Decode, Execute, Memory, Writeback) needed to fully process an

11

instruction. An instruction is fetched (from the instruction cache) in stage F,
decoding and operand register accesses occur in D, execution in E and if there
are load/store instructions the memory accesses happen in M. The results are
written back to registers in W. The (normal) flow of instructions in the pipeline
is shown in Fig. 6. This optimal flow may be slowed down when pipeline stalls
occur: if the instruction i + 1 needs a register written to by instruction i there
will be a one cycle stall at cycle j + 3 for instruction i+ 1; when the W stage is
finished for instruction i, the E stage can begin for instruction i+ 1.

F D E M W

F D E M W

F D E M Winst. i

inst. i+1

inst. i+2

cyclej j+2 j+3j+1 j+4 j+5 j+6

Fig. 6: Pipeline of the ARM920T

Hardware abstract model. A formal model of the hardware for the ARM920T
can be specified by a network of timed automata [9]. We provide here simpler
models of the hardware because we factor out the actual state of the caches:
to compute the execution time of a sequence of instructions we only need to
know whether a transaction with a cache is a hit or a miss. This information is
provided by each node in TreeaH(P) (LaH(P)) for a given program P . It can be
computed by monitoring the addresses that are used on a given trace and using
a odel of the caches (e.g., number of lines, ways and FIFO replacement policy).
In [8] we also proposed an abstraction/refinement scheme to model the caches.
For instance the 5-stage pipeline of the ARM920T can be specified by a network
of 5 timed automata (see Fig. 7) each of them modelling a single stage of the
execution pipeline.

Each stage automaton has a unique identifier me (an integer). The values
of this identifier for the templates (F, D, E, M, W) are respectively (0,1,2,3,4).
This encodes the fact that the stages F, D, E, M, W are ordered: each node
of TreeaH(P) flows from one stage k to the next k + 1 when the pushTo[k]

channels synchronise. For instance, the F-Stage template automaton is idle until
the Program Automaton (Fig. 5) pushes a node via the pushTo[0]? transition.
It updates the local state of this stage 0 (locState[0]=node) where node is
a (meta) variable used to retrieve the value sent by the Program Automaton
that issues the pushTo[0]! command. The F stage template automaton then
synchronises with the instruction cache (see Fig. 7) to simulate the time it takes
to fetch the instruction from the instruction cache.

The memory stage (M stage) assumes a constant time to read data from
the data cache: each transaction takes MEM SPEED cycles. We can easily model

12

F Stage

D stage

E Stage

M Stage W Stage

Fig. 7: Timed Automata for F, D, E, M and W Stages (pipeline ARM920T).

13

the data cache but for the sake of simplicity we use a simple version here. The
other stages (D, E, M, W) are based on the same logic: they are idle until the
previous stage pushes some information to them. The copy(me,me+1) commands
transfers the information from stage me to stage me+1. When going back to the
IDLE (initial) location, the local information of the templates are reset to the
default value NO STATE which indicates that the pipeline state is empty.

Fig. 8: Instruction cache template.

The instruction cache is specified by the template timed automaton in Fig. 8.
The PMT variable holds the number of Pending Memory Transactions. This num-
ber is determined by the hit ins function that can be retrieved from the anno-
tated node in the tree.

Finally the main memory template simply simulates how long it takes to
perform a transaction (read or write) with the main memory.

Fig. 9: Main memory template.

14

4 Implementation and experimental results

Tool chain. Let us dwell on the tool chain we have constructed to demonstrate
our methodology described in Section 3. The toolchain, visualized in Fig. 10, is

bin.elf

pre-analysis

bin.annotatedHW.xml

Uppaal libgdb2uppaal gdb qemu

Fig. 10: The tool chain of WUppaal. Orange blocks are the modules we imple-
mented. Other blocks are existing modules.

composed of five components:

– a pre-analysis module for constructing an annotated program that can
be used to generate the program traces LH(P); this step is developped in
Scala and uses some powerful Grammar and Language Processing packages
Kiama [20] and Sbt-Rats! [21].

– qemu [4] to emulate the chosen hardware and enables us to compute the next
state after executing a program instriuction. As an example of usage, we
set up the hardware to a given initial state (program counter and valkues
of registers and stack), and with qemu we can compute the effect of an
instruction. What is communicated back (using gdb) is the next program
counter and the next state of the registers and stack.

– gdb [22] for inspecting qemu,
– libgdb2uppaal to implement the tree-API given at the beginning of Sec-

tion 3.
– a Timed Automaton model of the hardware HW.xml (an example is provided

on Fig. 7, page 13 for the pipelines and Fig. 8, page 14 and Fig. 9, page 14
for the main memory and instruction cache.)

– Uppaal for computing the worst-case execution time given a sequence of
nodes using the Program Automaton template Fig. 5, page 11, The Uppaal
model uses an integer counter to identify the current state of the program.
The libgdb2uppaal maintains a table that maps integers to actual program
states (program counter, values of the registers and the stack). The get next

function in the Tree-API returns all the possible successors of a state as

15

integers and updates the table that maps integers to program state (when a
new state is encountered). The Program Automaton (Fig. 5) will explore all
the successor states.

Computing the WCET for a given binary program bin.elf using our framework
is a two-stage process. In the first stage we compute an annotated program
(e.g., a CFG and the set of variables needed to generate the annotated language
LaH(P)) by using pre-analysis.) In the second stage we use Uppaal to drive a
search through the state space, interfacing (by proxy of gdb and libgdb2uppaal)
with the emulator of the hardware as described in Section 3. In the current model,
we ignore the data cache but this is not a restriction as the caches can be added
to the program state and modeled in the libgdb2uppaal library.

Support for other languages and hardware. The approach we propose is
general enough to accommodate other languages and hardware. For instance, as-
sume we want to use an x86 processor and the corresponding assembly language.
What needs to be provided is a new pre-analysis module for this assembly lan-
guage to construct the annotated program. The pre-analysis we have developed
for the ARM assembly language is easy to re-use to build support for other
languages.

We also need to provide an abstract model for the x86 hardware as a network
of timed automata. The widgets we have proposed in Section 2 for the ARM920T
pipeline can be adapted to build new formal models for an x86 platform (and of
course new pipeline stages can be added if the architecture requires it).

Finally we need qemu (or an equivalent program) to support the emulation of
the hardware. The general architecture we introduced in Fig. 10 can be re-used
as well as the the modular method depicted in Fig. 3 to compute the WCET for
programs running on the x86.

Results. We have experimented our technique using some of the standard
benchmarks [17] from Mälardalen University, for computing WCET. As we can
see in Table 1, we are achieving a reasonable computation time (less than 5
seconds for all experiments), demonstrating the feasibility of our approach. We
can also see that for all of the test-cases, the constructed trees are fairly small
in size. In this paper we do not provide a thorough comparison with the actual
measured execution times because we use simple models for the caches. The
models used in [9] may be used in the future. The results in [9] demonstrated
that our approach provides very accurate WCET and the new implementation
should give similar results when precise models of the caches are used.

5 Conclusion

We have presented a method, based on timed automata and real-time model-
checking with Uppaal, to compute the WCET of binary programs. The method
we designed is generic and can accommodate arbitrary hardware. The proposed
tool chain allows us to achieve a modular approach to WCET-computation,

16

Program Loc |TreeaH(P)| Time WCET

duff 145 1750 4.51 61215

fibcall 48 553 2.91 19320

insertsort 84 7 2.09 210

janne complex 67 360 3.21 12565

lcdnum 100 250 2.52 8715

Table 1: The experimental results, time is given in seconds and includes startup
overhead from initializing gdb and qemu. The loc measure is the number of lines
of assembly. Note that more experiments will be added by the final submission.

reducing the overhead needed to support new binaries, and new architectures.
To support different binaries we only have to provide pre-analysis with a
different input. To support different processors, it is sufficient to provide a new
hardware-model (HW.xml) and emulator (qemu).

Moreover, our technique does not rely on the computation of loop bounds or
the assumption that the hardware is free of timing anomalies: this is one of the
strengths of the model-checking method. Another strength is that it generates
a witness program trace that produces the WCET. Other interesting features
of this approach includes its generality: we do not need to assume that the
initial state of the caches is known. The only requirement is that the annotated
language LaH(P) over-approximates the program behaviours.

Our technique is also general enough to be paired with program refinement
techniques. As mentioned in Section 3 for Prog1, some traces in LH(P) may
not be feasible: if the first choice for the test a < b is true (resp. false), the
following test of the same condition must be true (resp. false). In that case
we compute a refinement R1 ⊆ LaH(P) of the annotated program to rule the
spurious traces and analyse the refinement R1. This can de done using the trace
abstraction approach of [14, 15]. This enables us to define an iterative method to
compute better and better over-approximations of the WCET and ensure that
one witness trace exists.

Notice that this refinement also applies to the hardware model: we can start
with a very simple model of the caches where every transaction is either a Hit
or a Miss. Once a WCET is computed with Uppaal, we can check whether the
witness trace is feasible in the program and in the caches. If the cache behaviour
that is in the witness is spurious (infeasible) we can refine it as well. We have
implemented a cache refinement technique in [8]. This enables us to get some
control on the accuracy of the computation via model-checking.

On another note, we can use our technique as a simulation based technique:
the bin.annotated component in the tool chain Fig. 10 can be replaced by a gen-
erator of traces. In this case we can only compute a lower bound for the WCET
but we get access to the statistical model-checking engine of Uppaal. This opens
a new avenue to compute some probabilitic distributions of the WCET.

17

In addition, outsourcing the semantics of a binary program to a trusted em-
ulation tool (qemu) eliminates errors that occurs when semantically translating
binary programs into timed automata. As such a translation necessitates a very
high level of detail, it can easily result in a state-space explosion – even for simple
architectures and programs. With our construction, knowledge of the hardware
and static-analysis and abstraction refinement methods can be used to reduce
the size of explored state space.

References

1. AbsInt Angewandte Informatik: aiT Worst-Case Execution Time Analyzers., http:
//www.absint.com/ait/

2. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
3. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,

Hendriks, M.: Uppaal 4.0. In: QEST. pp. 125–126. IEEE Computer Society (2006)
4. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the

Annual Conference on USENIX Annual Technical Conference. pp. 41–41. ATEC
’05, USENIX Association, Berkeley, CA, USA (2005), http://dl.acm.org/citation.
cfm?id=1247360.1247401

5. Bernat, G., Colin, A., Petters, S.M.: pWCET a Toolset for automatic Worst-Case
Execution Time Analysis of Real-Time Embedded Programs. In: Proceedings of
the 3rd Int. Workshop on WCET Analysis, Workshop of the Euromicro Conference
on Real-Time Systems. Porto, Portugal (2003)

6. Cassez, F.: Timed Games for Computing Worst-Case Execution-Times. Research
report, National ICT Australia (Jun 2010), 31 pages. Available from http://arxiv.
org/abs/1006.1951

7. Cassez, F.: Timed Games for Computing WCET for Pipelined Processors with
Caches. In: ACSD’11. pp. 195–204. IEEE Comp. Soc. (Jun 2011)

8. Cassez, F., de Aledo Marugán, P.G.: Timed automata for modelling caches and
pipelines. In: van Glabbeek, R.J., Groote, J.F., Höfner, P. (eds.) Proceedings Work-
shop on Models for Formal Analysis of Real Systems, MARS 2015, Suva, Fiji,
November 23, 2015. EPTCS, vol. 196, pp. 37–45 (2015)

9. Cassez, F., Béchennec, J.: Timing analysis of binary programs with UPPAAL. In:
13th International Conference on Application of Concurrency to System Design,
ACSD 2013. pp. 41–50. IEEE Computer Society (Jul 2013)

10. Cassez, F., Hansen, R.R., Olesen, M.C.: What is a timing anomaly? In: 12th Inter-
national Workshop on Worst-Case Execution Time Analysis, WCET 2012, July 10,
2012, Pisa, Italy. OASICS, vol. 23, pp. 1–12. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2012)

11. Dalsgaard, A.E., Olesen, M.C., Toft, M., Hansen, R.R., Larsen, K.G.: Metamoc:
Modular execution time analysis using model checking. In: Lisper, B. (ed.) WCET.
OASICS, vol. 15, pp. 113–123. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany (2010)

12. Dalsgaard, A.E., Olesen, M.C., Toft, M.: Modular Execution Time Analysis using
Model Checking. Master’s thesis, Dpt. of Computer Science, Aalborg University,
Denmark (2009)

13. Ferdinand, C., Heckmann, R., Wilhelm, R.: Analyzing the worst-case execution
time by abstract interpretation of executable code. In: Broy, M., Krüger, I.H.,
Meisinger, M. (eds.) ASWSD. LNCS, vol. 4147, pp. 1–14. Springer (2004)

18

14. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
Palsberg, J., Su, Z. (eds.) SAS. LNCS, vol. 5673, pp. 69–85. Springer (2009)

15. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp.
36–52. Springer (2013)

16. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Journal of Software
Tools for Technology Transfer (STTT) 1(1-2), 134–152 (1997)

17. Mälardalen WCET Research Group: WCET Project – Benchmarks., http://www.
mrtc.mdh.se/projects/wcet/benchmarks.html

18. Rapita Systems Ltd.: Rapita Systems for timing analysis of real-time embedded
systems., http://www.rapitasystems.com/

19. Rieder, B., Puschner, P., Wenzel, I.: Using Model Checking to Derive Loop Bounds
of General Loops within ANSI-C Applications for Measurement Based WCET
Analysis. In: 6th Int. Workshop on Intelligent Solutions in Embedded Systems
(WISES’08). Regensburg, Germany (2008)

20. Sloane, A.M.: Lightweight Language Processing in Kiama. In: Generative and
Transformational Techniques in Software Engineering III, pp. 408–425. No. 6491
in Lecture Notes in Computer Science, Springer Berlin Heidelberg (Jan 2011),
http://link.springer.com/chapter/10.1007/978-3-642-18023-1 12

21. Sloane, A., Cassez, F., Buckley, S.: The Sbt-rats parser generator plugin for scala
(tool paper). In: Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala.
pp. 110–113. SCALA 2016, ACM, New York, NY, USA (2016), http://doi.acm.org/
10.1145/2998392.3001580

22. Stallman, R., Pesch, R., Shebs, S., et al.: Debugging with gdb. Free Software Foun-
dation 51, 02110–1301 (2002)

23. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenström, P.: The Worst-Case Execution-Time
Problem - Overview of Methods and Survey of Tools. ACM Trans. Embedded
Comput. Syst. 7(3) (2008)

19

