
The Dark Side of Timed Opacity

Franck Cassez?

National ICT Australia & CNRS
The University of New South Wales

Sydney, Australia
franck.cassez@cnrs.irccyn.fr

Franck.Cassez@nicta.com.au

http://www.irccyn.fr/franck

Abstract. In this paper we extend the notion of opacity, defined for
discrete-event systems, to dense-time systems. We define the timed opa-
city problem for timed automata and study its algorithmic status. We
show that for the very restrictive class of Event Recording Timed Auto-
mata, the opacity problem is already undecidable leaving no hope for an
algorithmic solution to the opacity problem in dense-time.

1 Introduction

Security issues have become increasingly important in the last decade with
the development of the Internet. Various notions and theories have emerged
to model, design and check that a given system is secure. These theories provide
sound foundations for the analysis of security policies. For instance, many se-
curity policies like access control, channel-control can be formulated within the
framework of transitive or intransitive non-interference (see [1] for an excellent
introduction to the subject).

Opacity. Non-interference cannot capture every type of security policies. Thus
extension and generalization have been proposed to address relevant practical
problems. Opacity was introduced in [2,3] to model leaks of information from a
system to an attacker. The framework of opacity is the following: a (model of
the) system A is given which generates sequences of actions over an alphabet Σ.
A secret S is a subset of the sequences of actions generated by A. An attacker
can only see the generated sequences through an interface which prevents the
observation of some of the events: he has only a partial knowledge of the events
generated by A and sees the projection of a sequence over an alphabet Σo ⊆ Σ.
The secret S is opaque w.r.t. A and Σo, if for every observation w the attacker
can make, he can never infer that this observation was produced by a secret
sequence in S.

Assume the system A can generate the sequences of events {ab, cb} and the
attacker can only see Σo = {b}. Let S = {ab} be the secret. Then S is opaque
? Author supported by a Marie Curie International Outgoing Fellowship within the

7th European Community Framework Programme.

w.r.t. A and Σo. Indeed the only observation the attacker can make is the se-
quence “b”, but then, he cannot know whether this observation is the projection
of ab or cb and thus cannot know the secret.

The opacity problem consists in checking

a

c

b

b

Fig. 1. The Automaton A

whether a secret is opaque for a model of a
system. Anonymity and non-interference can
be reduced to opacity using a proper encod-
ing [2]. If the system A is given by a finite
transition system over an alphabet Σ, the
secret S is a regular language included in Σ∗

and the observation of an attacker is defined
by a projection over Σo ⊆ Σ, the opacity
problem can decided [2]. The previous introductory example can be modeled by
the finite automaton A of Figure 1.

Taking Time into Account. In the above mentioned framework, the attacker
can only observe sequences of events but not the point in time at which they
occur. But time could be an important information for an attacker. Indeed,
assume the system generates {ab, cb} as before, but when it generates ab, then
“b” occurs at (global) time 1, and when it generates cb then “b” occurs at (global)
time 2 (for instance, the system is slower when doing the “c” action than doing
the “b”). Using this timing information, and yet observing only “b”, an attacker
can know whether an “a” or a “c” has occurred: if “b” occurs at time 1, the
system generated ab, otherwise if “b” occurs at time 2, it generated cb. If the
secret is ab as before, then it is no more opaque for an attacker who has a clock.

Taking into account the ability of the attacker to measure time gives a more
accurate and realistic model of the system. Whether it is dense-time of discrete-
time is important as it has been shown that the expressiveness of dense-time
models (timed automata) is strictly larger than discrete-time ones [4]. In this
paper we use timed automata [4] to model dense-time systems and study the
opacity problem in this setting.

Related Work. Formalizing security policies is an important issue and has been
investigated a lot in the recent years. In these frameworks, a finite or discrete
state model of the system is known, and the security policy is specified as a
property of this model: see [1,5] for non-interference and [2,3] for opacity.

Taking into account timing aspects in the model has been investigated for
(strong non-deterministic) non-interference (SNNI) in [6,7] where it is shown that
checking SNNI is decidable for deterministic timed automata. To our knowledge,
the opacity problem for timed systems has not been studied and this is the
contribution of this paper.

We show that, although it is important to take into account in the model
of the system the capability of an attacker to measure time, the problem of
checking whether such a model is opaque is undecidable for a very restricted
class of timed systems (Event Recording Automata). This leaves no hope for an
algorithmic solution to this problem.

2

Organisation of the Paper. Section 2 recalls the basics of timed languages
and timed automata. Section 3 contains a formal definition of the opacity prob-
lem for dense-time systems. Section 4 is the main part of the paper and we
prove that opacity is undecidable for timed automata. Finally, Section 5 gives a
summary of the contribution of the paper.

2 Preliminaries

2.1 Notations

In the sequel Σ is a finite alphabet. We let τ be the unobservable action, and
let Στ = Σ ∪ {τ}. R is the set of real numbers and R≥0 is the set of non-
negative reals numbers. N the set of natural numbers, Z the set of integers and
B = {true, false} is the set of boolean values.

Let X be a finite set of clocks. We let C(X) be the set of convex constraints
on X, i.e., the set of conjunctions of constraints of the form x ./ c with c ∈ Z and
./∈ {≤, <, =, >,≥}. A clock valuation is a mapping v : X → R≥0. We let RX

≥0

be the set of clock valuations over X. We let 0X be the zero valuation where all
the clocks in X are set to 0 (we use 0 when X is clear from the context). Given
δ ∈ R, we let v+δ denote the valuation (v+δ)(x) = v(x)+δ. Given a constraint
g ∈ C(X) and a valuation v, we write v |= g if g is satisfied by the valuation v.
Given a set R ⊆ X and a valuation v of the clocks in X, v[R] is the valuation
v[R](x) = v(x) if x 6∈ R and v[R](x) = 0 otherwise.

The set of finite words over an alphabet Σ is Σ∗ which contains the empty
word ε. If w = a1 · · · an, |w| = n is the length of w, and we write w[i], 1 ≤ i ≤ |w|
to denote the ith letter ai of w. A language L is any subset of Σ∗. A finite timed
word over Σ is a word in (Σ ×R≥0)∗ i.e., over the (infinite) alphabet Σ ×R≥0.
Thus a timed word is a pair w = (σ, t) with σ ∈ Σ∗, t ∈ R∗

≥0 with |σ| = |t| and
with the convention that event σ[i] occurs at global time t[i]. Hence we require
the t[i]’s to form an increasing sequence.

TW ∗(Σ) is the set of finite timed words over Σ and again ε is the empty
timed word. A timed language is any subset of TW ∗(Σ). Given a timed language
K, we let Unt(K) = {σ ∈ Σ∗ | ∃t ∈ (R≥0)∗ : (σ, t) ∈ K}. Given Σ′ ⊆ Σ, the
projection of (σ1, t1)(σ2, t2) · · · (σn, tn) is the timed word that comprises of the
letters σi ∈ Σ′. For example π{a,b}((a, 1)(c, 2.34)(τ, 2.986)(b, 3.146)(c, 4.16)) is
(a, 1)(b, 3.146). πΣ′(K) = {πΣ′(w) | w ∈ K}. Let K ⊆ (Σ′)∗. The inverse
projection π−1

Σ (K) is defined by: π−1
Σ (K) = {w ∈ TW ∗(Σ) | πΣ′(w) ∈ K}.

2.2 Timed Automata

Timed Automata (TA) were introduced in [8] to model real-time systems using
dense-time. The fundamental results about timed automata can be found in [4].

Definition 1 (Timed Automaton). A Timed Automaton A is a tuple (L, l0,
X, Στ , E, F) where:

3

– L is a finite set of locations;
– l0 is the initial location;
– X is a finite set of clocks;
– Σ is a finite set of actions;
– E ⊆ L×C(X)×Στ ×2X ×L is a finite set of edges; in an edge (`, g, a, r, `′),

g is the guard, and r the reset set;
– F ⊆ L is the set of final locations. �

A state of A is a pair (`, v) ∈ L×RX
≥0. A run % of A from (`0, v0) is a sequence

of the form:

% = (`0, v0)
δ0−→ (`0, v0 + δ0)

a0−→ (`1, v1) · · · · · · an−1−−−→ (`n, vn) δn−→ (`n, vn + δn)

s.t. for every i ≥ 0 there is some edge (`i, gi, ai, ri, `i+1) ∈ E and: (i) vi + δi |=
gi, (ii) vi+1 = (vi + δi)[ri]. The set of finite runs from s = (`, v) is denoted
Runs(s,A) and we let Runs(A) = Runs((l0,0), A). We let last(%) = (`n, vn +δn).
The trace, tr(%), of the finite run % is the timed word (σ1, t1)(σ2, t2) · · · (σn, tn)
with σi = ai−1, 1 ≤ i ≤ n and ti =

∑i−1
k=0 δk, 1 ≤ i ≤ n. For V ⊆ Runs(A),

we let Tr(V) = {tr(%) | % ∈ V }, which is the set of traces of the runs in V .
Let Tr(A) = Tr(Runs(A)) be the set of traces generated by A (note that this
language is prefix-closed).

A finite timed word w is accepted by A if it is the trace of a run % of A that
ends in an F -location i.e., last(%) ∈ F × RX

≥0. L(A) is the set of traces of finite
timed words accepted by A.

Example 1.
The automaton B of Figure 2 is a simple

0

1

3 4

2a;x = 0

c;x = 0

b;x = 1

b;x = 2

Fig. 2. The Automaton B

timed automaton with one clock x. It in-
dicates that an “a” or a “c” can occur
at time 0 and be followed either by a “b”
at time 1 or a “b” at time 2. In this ex-
ample we do not use strict constraints like
1 < x < 2. Thus automaton B can gener-
ate the following runs:

(0, x = 0) a−−→ (1, x = 0) 1−→ (1, x = 1) b−−→ (2, x = 1) δ−−→ (2, x = 1 + δ)

or

(0, x = 0) c−−→ (3, x = 0) 2−→ (3, x = 2) b−−→ (4, x = 2) δ−−→ (4, x = 2 + δ)

with δ ≥ 0. The set of timed words generated by automaton B consists of two
timed words and L(B) = Tr(B) = {(a, 0)(b, 1), (c, 0)(b, 2)}. ♦

A τ -edge in a timed automaton is an edge (`, g, a, r, `′) with a = τ . A timed
automaton (L, l0, X,Στ , E, F) is deterministic if: (i) it does not contain any τ -
edge and (ii) whenever two edges (`, g1, a, r1, `1) and (`, g1, a, r2, `2) are in E,
then g1 ∧ g2 is equivalent to false. A is an Event Recording Automaton if: it is

4

deterministic1 and (iii) each clock xa ∈ X is paired with an event a ∈ Σ, and
(iv) if (`, g, a, r, `′) ∈ E, then r = {xa}.

We use the following classes of TA in the sequel:

– the most general class [9] of TA with τ -edges given by Definition 1 is denoted
τNTA;

– NTA is the sub-class of τNTA which consists of non-deterministic TA with
no τ -edges;

– DTA is the sub-class of NTA which consists of deterministic TA;
– ERA is the sub-class of DTA which consists of Event Recording Automata

(ERA, see [10]); ERA are TA where each clock is associated with an event
and when this event occurs the corresponding clock is reset.

These classes of TA can be ordered according to the class of timed languages they
accept. A class C is more expressive than C ′ if every timed language accepted
by a TA of C ′ can be accepted by a TA of C. This defines a pre-order C ′ v C
(reads “C is more expressive than C ′”) on classes of TA. The expressive power
of the different classes is strictly increasing in the following order (see [10,9]):

ERA @ DTA @ NTA @ τNTA (1)

One of the key result in the seminal paper of Alur and Dill [4] is that the univ-
ersality problem for NTA, i.e., checking whether a NTA A accepts all timed
words, is undecidable (notice that it is decidable for DTA [4]).

2.3 Product of Timed Automata

In the sequel we need to use the product of two TA to reduce the opacity problem
to the L-opacity problem (section 4.2).

Definition 2 (Product of TA). Let Ai = (Li, l
i
0, Xi, Σ

i
τ , Ei, Fi), i ∈ {1, 2},

be two TA such that X1 ∩ X2 = ∅. The product of A1 and A2 is the timed
automaton A1 ×A2 = (L, l0, X,Στ , E, F) given by:

– L = L1 × L2,
– l0 = (l10, l

2
0),

– Σ = Σ1 ∪Σ2,
– X = X1 ∪X2,
– E ⊆ L× C(X)×Σ × 2X × L and ((`1, `2), g1,2, σ, r, (`′1, `

′
2)) ∈ E if:

• either σ ∈ Σ1 ∩Σ2, and (i) (`k, gk, σ, rk, `′k) ∈ Ek for k = 1 and k = 2;
(ii) g1,2 = g1 ∧ g2 and (iii) r = r1 ∪ r2;

• or for k = 1 or k = 2, σ ∈ (Σk \Σ3−k)∪ {τ}, and (i) (`k, gk, σ, rk, `′k) ∈
Ek; (ii) g1,2 = gk et (iii) r = rk;

– F = F1 × F2. �

1 In their original paper [10], Alur et al. do not require that ERA be deterministic.
Considering deterministic ERA is not a restriction since (non-deterministic ERA)
are determinizable [10].

5

A1 and A2 have no clocks in common, ans it is a well-known fact that:

Lemma 1. L(A1 ×A2) = L(A1) ∩ L(A2).

Thus given two automata A1 and A2 that have no clocks in common, it is possible
to construct the product A1 × A2 which accepts exactly the intersection of the
two timed languages L(A1) ∩ L(A2).

3 Timed Opacity

In this section we give a formal definition of opacity for timed automata along
with a small example.

Assume we are given a timed automaton (L, l0, X, Στ , E, F) and a secret
S ⊆ TW ∗(Σ). Let Σo ⊆ Σ be a set of observable events. Opacity is a property
which ensures that, if the system generates a timed word w, and an external
observer, the attacker, can only see πΣo(w), he can never infer whether the
original timed word w generated by A is in S or not. Let π be the projection
over Σo.

Two words w,w′ ∈ TW ∗(Σ) are π-equivalent, denoted w ≡ w′ if π(w) =
π(w′). Given w ∈ π(Tr(A)), we let [w] be the set of timed words of A the
projection of which is w. Thus [w] = π−1(w)∩Tr(A) i.e., [w] is the set of timed
words generated by A which give the same trace when projected on Σo. We can
define formally what is opacity for timed automata. The relational operator 6⊆
is used to denote non inclusion: for two sets A and B, A 6⊆ B stands for “A is
not included in B”.

Definition 3 (Opacity). The secret S is opaque w.r.t. A and Σo ⊆ Σ iff for
each w ∈ π(Tr(A)), [w] 6⊆ S. �

The opacity problem is the following:

Given a TA A, a secret S and Σo ⊆ Σ, is S opaque w.r.t. A and Σo ?

Definition 3 defines opacity as a non-inclusion property. If [w] 6⊆ S for w ∈
π(Tr(A)), it simply means that the observation w can be produced by at least
two timed words w1 and w2 in A and at least one of them is not in S. Thus we
cannot conclude by observing w that a word of S generated the observation w.

Example 2. Assume Σ = {a, b, c} and Σo = {b}. Let S = {ab} be the secret and
A be the finite automaton2 given in Figure 1 (all locations are accepting) in the
introduction. S is opaque w.r.t. the automaton A and Σo because, if an attacker
sees a “b”, he cannot infer what the preceding letter was and cannot know the
secret ab: π−1(b) ∩ Tr(A) = {ab, cb} 6⊆ S.

The timed automaton in Figure 2, page 4, generates the timed language
L(B) = {(a, 0)(b, 1), (c, 0)(b, 2)}. Notice also that Unt(L(B)) = L(A). Define the
secret by the timed language S′ = {(a, t1)(b, t2)}, 0 ≤ t1 ≤ t2. Assume now
2 A finite automaton is a timed automaton with no clocks.

6

that an attacker can measure time with his own clock but can only observe
Σo = {b}. Then S′ is not opaque any more w.r.t. B and Σo: indeed, if the
attacker sees “b” at time 1 he knows an “a” has occurred. Thus there is a
timed word w = (a, 0)(b, 1) ∈ Tr(B) s.t. πΣo

(w) = (b, 1) ∈ πΣo
(Tr(B)) and

π−1
Σo

((b, 1)) = {w} ⊆ S′ which contradicts the requirement of Definition 3. ♦

In this sense timed opacity is an interesting generalisation of opacity as it
takes into account the time-measuring capabilities of an external attacker which
gives him additional observational power. Nevertheless, from an algorithmic
viewpoint, timed opacity is hopeless as we will show in the next section.

4 Checking Timed Opacity

In this section we will prove that the simplest versions of the timed opacity
problem are undecidable for timed automata.

We first define a version of timed opacity where the secret is a set of states an
automaton can be in. Let A = (L, l0, X, Στ , E, F) be a timed automaton where
F is a set of secret locations. Let Σo ⊆ Σ and π be the associated projection.
Given a word w ∈ TW ∗(Σ), we let last(w) = {last(%) |% ∈ Runs(A)∧tr(%) = w};
last(w) is the set of states A can be in after reading the timed word w. This
extends trivially to sets of traces.

4.1 Checking Location-Based Opacity

We can now define a location-based version of timed opacity: Let A = (L,
l0, X,Στ , E, F) be a timed automaton with secret locations F .

Definition 4 (L-Opacity). F is L-opaque with respect to A and Σo ⊆ Σ iff
for each w ∈ π(Tr(A)), last([w]) 6⊆ F . �

The L-opacity problem asks the following:

Given a TA A, a set of secret states F and Σo ⊆ Σ, is F L-opaque
w.r.t. A and Σo?

A first negative result is easy to prove for L-opacity:

Theorem 1. The L-opacity problem is undecidable for NTA.

Proof. We reduce the universality problem for NTA, which is known to be un-
decidable [4], to the L-opacity problem for NTA.

Let A = (L, l0, X, Σ, E, F) be a non-deterministic TA, with accepting loca-
tions F . The universality problem consists in deciding whether L(A) = TW ∗(Σ).

First thing we do is to complete A by adding edges from each location, with
guard true, and fresh target location Bad which is not in F . Then we can
assume that Tr(A) = TW ∗(Σ). Note that it does not change L(A) as Bad is
not accepting. L(A) is universal is equivalent to:

∀w ∈ TW ∗(Σ), last(w) 6⊆ L \ F (2)

7

Let Σo = Σ. L \ F is L-opaque w.r.t. A and Σ amounts to:

∀w ∈ π(Tr(A)), last([w]) 6⊆ L \ F (3)

but as π(Tr(A)) = Tr(A) = TW ∗(Σ) and [w] = w (no τ -edges), equation (2)
is equivalent to equation (3). As universality is undecidable for NTA, the result
follows. ut

Because τNTA includes NTA, it follows that the L-opacity problem is also
undecidable for τNTA. To prove the previous result we did not need to take any
particular strict subset of Σ. It turns out that, using this possibility to make
the observable alphabet vary, we can prove that the L-opacity problem is also
undecidable for DTA.

Theorem 2. The L-opacity problem is undecidable for DTA.

Proof. Let A = (L, l0, X, Στ , E, F) be a τNTA. We show that F is L-opaque
w.r.t. A and Σ if and only if F is L-opaque w.r.t. A′ and Σ, where A′ is a DTA.
Assume the only non-determinism in A is on the τ -edges, i.e., A is deterministic
for all the other actions in Σ. Then A has a finite number, say n, of τ -edges. Let
{a1, a2, · · · , an} be fresh letters not in Σ. Order the τ -edges and replace the τ
action in τ -edge k by ak. This gives a DTA A′ on the alphabet Σ∪{a1, · · · , an}.
It is easy to see that F is L-opaque w.r.t. A and Σ if and only if F is L-opaque
w.r.t. A′ and Σ. ut

We now restrict our attention to ERA. It turns out that the L-opacity problem
is also undecidable for ERA:

Theorem 3. The L-opacity problem is undecidable for ERA.

Proof. We reduce the L-opacity problem for DTA to an opacity problem on
ERA. Let A = (L, l0, X, Σ, E, F) be a DTA. We let Σ(X) = {rx, x ∈ X} be a
set of actions corresponding to each clock x in X. Also we define Xa = {xa, a ∈
Σ} to be a new set of clocks associated with actions in Σ.
Let (`, g, a,R, `′) be an edge from E with R = {x1, · · · , xk}. Consider the
sequence of edges given in Figure 3. In this sequence, we reset the first clock (xa

does not appear in any guard of A) xa and then use it to enforce the reset of
the clocks in R within 0 time units. The set Ri is given by {xi, · · · , xk}. The
sequence of transition given on Figure 3 fires only if g is satisfied (and the new
clocks in Xa are not constraining g) and then resets the clocks in R without any
time elapsing. Thus when `′ is reached, the values of the clocks in X have the
same values as the ones they would have if firing (`, g, a,R, `′).

For an edge e ∈ E, denote κ(e) the associated set of edges as given in Figure 3.
Let A′ = (L∪L′, l0, X ∪Xa, Σ ∪Σ(X), E′, F) be the TA with L′ = L× 2X and
E′ comprises of all the edges κ(e), e ∈ E.

First A′ is an ERA. Second F is opaque w.r.t. A and Σ if and only if F is
opaque w.r.t. A′ and Σ. This completes the proof. ut

8

` (`′, R1) (`′, R2)

(`′, Rk−1)(`′, Rk)`′

(g, a, {xa}) (xa = 0, rx1 , {x1})

(xa = 0, rxk , {xk−1})(xa = 0, rx1 , {xk})

`

`′

(g, a, R)

Fig. 3. Widget κ(e) for Encoding DTA L-Opacity into ERA L-Opacity

4.2 Checking Opacity

The initial version of opacity of Definition 3 can be reduced to L-opacity for
secret languages S generated by deterministic timed automata, even ERA. This
opacity problem has two parameters: the model of the system and the secret
language. It follows that:

Theorem 4. The opacity problem is undecidable for systems given by ERA and
secrets given by ERA.

Proof. We reduce opacity to L-opacity. Let A = (L, l0, X, Σ, E, L) be an ERA
and Σo ⊆ Σ. Assume the secret language S ⊆ L(A) is given by an ERA AS =
(LS , lS0 , XS , Σ,ES , FS). Define the product A × AS and remind that the final
locations are F × FS . Notice that the product of two ERAs is an ERA. By
definition of A×AS , and Lemma 1, L(A×AS) = L(A) ∩ L(AS) = L(A) ∩ S.

Consequently w ∈ L(A×AS) if and only if w ∈ Tr(A) ∩ S. Thus last([w]) 6⊆
F × FS if and only if [w] 6⊆ S. This completes the proof. ut

Remark 1. In the untimed case, for finite transition system, non-interference can
be reduced to an opacity problem [2]. It should not be difficult to extend the
reduction to timed automata. Thus it is not so surprising that opacity is unde-
cidable for NTA because checking non-interference for NTA is undecidable [6].

What is surprising is that this result holds for very restrictive classes of
timed automata like ERA, which usually have very nice closure and decidability
properties [10]. ♦

5 Conclusion

In this paper we have addressed the opacity problem for timed systems. It turns
out that the opacity problem is undecidable for the very restrictive class of ERA.
Notice that our result carries over to other reasonable models of dense-time
systems like Time Petri Nets (TPN), because TPN and τNTA are equivalent
w.r.t. timed language acceptance [11].

Our result is based on the undecidability of universality for NTA operating
in dense-time. Considering a time domain like N (not dense) may render the
opacity problem tractable.

9

Acknowledgements. The author would like to thank J. Dubreil and H. March-
and for introducing the opacity problem to him.

References

1. Rushby, J.: Noninterference, Transitivity and Channel-Control Security Policies.
Technical report, SRI International (2005)

2. Mazaré, L.: Using unification for opacity properties. In: Proceedings of the 4th
IFIP WG1.7 Workshop on Issues in the Theory of Security (WITS’04), Barcelona
(Spain) (2004) 165–176

3. Bryans, J., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to transition
systems. In Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S.A., eds.:
Formal Aspects in Security and Trust. Volume 3866 of Lecture Notes in Computer
Science., Springer (2005) 81–95

4. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science
(TCS) 126(2) (1994) 183–235

5. Focardi, R., Gorrieri, R.: Classification of security properties (part I: Informa-
tion flow). In Focardi, R., Gorrieri, R., eds.: Foundations of Security Analysis
and Design I: FOSAD 2000 Tutorial Lectures. Volume 2171 of Lecture Notes in
Computer Science., Heidelberg, Springer-Verlag (2001) 331–396

6. Gardey, G., Mullins, J., Roux, O.H.: Non-interference control synthesis for se-
curity timed automata. In: 3rd International Workshop on Security Issues in
Concurrency (SecCo’05). Electronic Notes in Theoretical Computer Science, San
Francisco, USA, Elsevier (2005)

7. Benattar, G., Cassez, F., Lime, D., Roux, O. H.: Synthesis of Non-Interferent
Timed Systems. Submitted (2009)

8. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Proc. 17th
International Colloquium on Automata, Languages and Programming (ICALP’90).
Volume 443 of Lecture Notes in Computer Science., Springer (1990) 322–335

9. Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36(2–3)
(1998) 145–182

10. Alur, R., Fix, L., Henzinger, T.A.: Event clock automata: A determinizable class
of timed automata. In: Proc. 6th International Conference on Computer Aided
Verification (CAV’94). Volume 818 of Lecture Notes in Computer Science., Springer
(1994) 1–13

11. Cassez, F., Roux, O.H.: Structural translation from time petri nets to timed auto-
mata. Journal of Software and Systems 79(10) (2006) 1456–1468

10

