
International Journal of Control, 2014
http://dx.doi.org/10.1080/00207179.2014.944356

Control and synthesis of non-interferent timed systems

Gilles Benattara, Franck Cassezb, Didier Limec,∗ and Olivier H. Rouxc

aClearSy, Paris, France; bNational ICT Australia, Sydney, Australia; cÉcole Centrale de Nantes, IRCCyN UMR CNRS 6597,
Nantes, France

(Received 10 July 2013; accepted 9 July 2014)

We focus on the control and the synthesis of secure timed systems which are modelled as timed automata. The security
property that the system must satisfy is a non-interference property. Intuitively, non-interference ensures the absence of any
causal dependency from a high-level domain to a lower level domain. Various notions of non-interference have been defined in
the literature, and in this paper, we focus on strong non-deterministic non-interference (SNNI) and two (bi)simulation-based
variants thereof (cosimulation-based SNNI and bisimulation-based SNNI). These properties and their extensions have been
mostly studied in the context of discrete event systems, while it is now well-known that time is an important attack vector
against secure systems.
At the same time, there is an obvious interest in going beyond simple verification to control problems: to be able to
automatically make systems secure.
We consider non-interference properties in the challenging setting of control of dense-time systems specified by timed
automata and we study the two following problems: (1) check whether it is possible to find a sub-system so that it is
non-interferent; if yes, (2) compute a (largest) sub-system which is non-interferent.
We exhibit decidable sub-classes for these problems, assess their theoretical complexities and provide effective algorithms
based on the classical framework of timed games.

Keywords: control; synthesis; non-interference; timed automaton; safety timed games

1. Introduction

Modern computing environments allow the use of pro-
grammes that are sent or fetched from different sites. Such
programmes may deal with secret information such as pri-
vate data (of a user) or classified data (of an organisation).
While operating systems provide isolation through separate
memory spaces, processes still interact via files, pipes, net-
work connections, shared memory, and other mechanisms.
Moreover, by measuring the time required by certain op-
erations, an attacker can learn information about the past
activities and time is a potential attack vector against secure
systems.

One of the basic concerns in such a context is to en-
sure that the programmes do not leak sensitive data to a
third party, either maliciously or inadvertently. This is of-
ten called secrecy.

In an environment with two parties, information-flow
analysis defines secrecy as ‘high-level information never
flows into low-level channels’. Such a definition is referred
to as a non-interference property, and may capture any
causal dependency between high-level and low-level be-
haviours.

Non-interference: We assume that there are two
privileged levels, and the set of actions of the system

∗
Corresponding author. Email: Didier.Lime@ec-nantes.fr

S is partitioned into !h (high-level actions) and !l

(low-level actions). The non-interference properties we
focus on are strong non-deterministic non-interference
(SNNI), cosimulation-based strong non-deterministic non-
interference (CSNNI), and bisimulation-based strong
non-deterministic non-interference (BSNNI). The non-
interference verification problem, for a given system S, con-
sists of checking whether S is non-interferent. This notion
is formalised by Rushby, 1992, in terms of input–output au-
tomata and, in the same paper, extended to intransitive non-
interference (INI). INI enables the specification of a gener-
alised class of security policies dealing with channel control
mechanisms. In Hadj-Alouane, Lafrance, Lin, Mullins, and
Yeddes (2005a, 2005b), INI is formalised in the setting of
discrete event systems (DES). Opacity (Mazaré, 2004) is
a more general notion where different observation func-
tions are compared with respect to their power of discov-
ering secret (or opaque) information. Opacity is expressive
enough to define SNNI but is not comparable to BSNNI.
It is worth noticing that non-interference properties are out
of the scope of the common safety/liveness classification of
system properties (Focardi & Gorrieri, 2001).

Verification of non-interference: Verification of
information-flow security properties (Focardi & Gorrieri,

C⃝ 2014 Taylor & Francis

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

2 G. Benattar et al.

1997, 2001) can be applied to the analysis of cryptographic
protocols where many uniform and concise characterisa-
tions of information-flow security properties (e.g. confi-
dentiality, authentication, non-repudiation, or anonymity)
in terms of non-interference have been proposed. For ex-
ample, the Needham–Schroeder protocol can be proved
insecure by defining the security property using SNNI
(Focardi, Ghelli, & Gorrieri, 1997), and other examples
of the use of non-interference in computer systems and
protocols for checking security properties can be found
in Bossi, Piazza, and Rossi (2007), Barthe, Pichardie, and
Rezk (2007), Kammuller (2008), and Krohn and Tromer
(2009). There is a large body of works on the use of static
analysis techniques to guarantee information-flow policies.
A general overview can be found in Sabelfeld and Myers
(2003). In van der Meyden and Zhang (2006), the authors
consider the complexity of many non-interference veri-
fication problems. In D’Souza, Raghavendra, and Sprick
(2005), an exponential time-decision procedure for check-
ing whether a finite-state system satisfies a given basic se-
curity predicate (BSP) is presented. The problem of the ver-
ification of INI is addressed in Hadj-Alouane et al. (2005a,
2005b) using algorithmic approaches in the DES setting.

Control for non-interference: In case a system is not
non-interferent, it is interesting to investigate how it can be
rendered non-interferent.

This is the scope of this paper where we consider the
problem of synthesising non-interferent timed systems. In
contrast to verification, the non-interference synthesis prob-
lem assumes that the system is open, i.e. we can restrict
the behaviours of S: some events, from a particular set
!c ⊆ !l ∪ !h, of S can be disabled. The non-interference
control problem for a system S asks the following: ‘Is there
a controller C s.t. C(S) is non-interferent?’ where C(S) is
‘S controlled by C’. The associated synthesis problem asks
to compute a witness controller C when one exists.

As mentioned earlier, SNNI is expressive enough, for
example, to prove that the Needham–Schroeder protocol is
flawed (Focardi et al., 1997). Controller synthesis enables
one to find automatically the patch(es) to apply to make
such a protocol secure.

Recently, supervisory control for opacity property has
been studied in Saboori and Hadjicostis (2008) and Cassez,
Dubreil, and Marchand (2009, 2012). In Cassez, Mullins,
and Roux (2007) the controller synthesis problem for non-
interference properties is addressed and in Moez, Lin, and
Ben Hadj-Alouane (2009), supervisory control to enforce
INI for three-level security systems is proposed in the un-
timed setting.

The case of timed systems: It is well-known that time
is a potential attack vector against secure systems (see
e.g. Kocher, 1996; Felten & Schneider, 2000; Bortz &
Boneh, 2007; Kotcher, Pei, Jumde, & Jackson, 2013) and
an attacker that can measure time as both more power-
ful and more realistic. It is indeed not surprising that a
non-interferent system can become interferent when tim-

ing constraints are added (Gardey, Mullins, & Roux, 2005).
The analysis of dense-time systems is more complex nat-
urally leading to the question of whether proof techniques
developed in the untimed setting can be generalised for
timed systems in order to be able to capture, besides the
logical information flows, also the time-dependent interfer-
ence. Some untimed bisimulation-based non-interference
properties for information flow studied in Focardi and Gor-
rieri (2001) have been reformulated in R. Focardi and Mar-
tinelli (2003) in a discrete time setting. In Barbuti and Tesei
(2003), some state-based and trace-based non-interference
properties have been introduced in a dense-time setting us-
ing timed automata (TA).

It was proved in Gardey et al. (2005) that the prob-
lem of the verification of timed SNNI is undecidable for
non-deterministic TA. Opacity which is more general than
SNNI is also undecidable for timed systems (Cassez, 2009)
and thus the associated control problem is undecidable as
well. The non-interference synthesis problem for dense-
time systems specified by TA was first considered in Gardey
et al. (2005). The non-interference property considered in
Gardey et al. (2005) is the state non-interference property,
which is less demanding than the one we consider here.
Finally, Benattar, Cassez, Lime, and Roux (2009) address a
decidable sub-class of the SNNI control problem for timed
systems.

Even though the objective of SNNI control is to restrict
the (timed) language of the system, with high-level actions
considered unobservable, so that it is equal to the language
of the system where these actions are cut of; this problem is
not easily reducible to a problem of time control with partial
observability as defined in Lin and Wonham (1988), Lin and
Wonham (1995), Kupferman and Vardi (1997), Lamouchi
and Thistle (2000), D’Souza and Madhusudan (2002), and
Bouyer, D’Souza, Madhusudan, and Petit (2003). The rea-
son is that the controller restricts at the same time both the
system and the target language. This is discussed in more
details in Section 5.4.

Our contribution: In this paper, we address the chal-
lenging problem of controlling dense-time systems so that
they become non-interferent. We focus on the most basic
forms of non-interference as a first step towards the more
sophisticated versions, such as INI.

The main contributions of this paper are as follows: (1)
we exhibit a class dTA of timed automata for which the
SNNI-VP is decidable; (2) We prove that deciding whether
there is a controller C for a timed automaton A such that
(s.t. in the following) C(A) is SNNI, is decidable for the
previous class dTA; (3) we reduce the SNNI controller syn-
thesis problem to solving a sequence of safety timed games;
(4) we show that there is not always a most permissive con-
troller for CSNNI and BSNNI; (5) we prove that the control
problem for CSNNI is decidable for the class dTA and that
the CSNNI controller synthesis problem for dTA reduces
to the SNNI controller synthesis problem; and (6) we also
give the theoretical complexities of these problems.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 3

This paper extends the results of our previous paper
(Benattar et al., 2009) as follows : Section 5 is an extension
with unpublished proofs of the results of Benattar et al.
(2009). All the others results are new.

Organisation of the paper: Section 2 recalls the
basics of TA, timed languages, and some results on
safety timed games. Section 3 gives the definition of the
non-interference properties we are interested in. Section
4 addresses the verification of non-interference properties
in the timed setting. Section 5 gives the definition of the
non-interference synthesis problem and presents the main
result: we show that there is the largest sub-system which
is SNNI and this sub-system is effectively computable.
Section 6 addresses the control problem and controller
synthesis problem for CSNNI and BSNNI properties.
Finally, we conclude in Section 7.

2. Preliminaries

Let R+ be the set of non-negative reals and N the set of in-
tegers. Let X be a finite set of positive real-valued variables
called clocks. A valuation of the variables in X is a function
X → R+, that can be written as a vector of RX

+. We let 0⃗X

be the valuation s.t. 0⃗X(x) = 0 for each x ∈ X and use 0⃗
when X is clear from the context. Given a valuation v and
R ⊆ X, v[R (→ 0] is the valuation s.t. v[R (→ 0](x) = v(x)
if x ̸∈ R and 0 otherwise. An atomic constraint (over X) is
of the form x ◃▹ c, with x ∈ X, ◃▹∈ {<,≤,=,≥,>}, and
c ∈ N. A (convex) formula is a conjunction of atomic con-
straints. C(X) is the set of convex formulas. Given a valu-
ation v (over X) and a formula γ over X, γ (v) is the truth
value, in B = {true, false}, of γ when each symbol x in γ

is replaced by v(x). If t ∈ R+, we let v + t be the valuation
s.t. (v + t)(x) = v(x) + t . We let |V | be the cardinality of
the set V .

Let ! be a finite set, ε ̸∈ ! and !ε = ! ∪ {ε}. A timed
wordw over ! is a sequence w = (δ0, a0)(δ1, a1) . . . (δn, an)
s.t. (δi , ai) ∈ R+ × ! for 0 ≤ i ≤ n, where δi represents
the amount of time elapsed1 between ai−1 and ai . T !∗

is the set of timed words over !. We denote by uv the
concatenation of two timed words u and v. As usual, ε is
also the empty word s.t. (δ1, ε)(δ2, a) = (δ1 + δ2, a): this
means that languagewise, we can always eliminate the ε

action by taking into account its time interval in the next
visible action. Given timed words w ∈ T !∗ and L ⊆ !, the
projection of w over L is denoted by projL(w) and is defined
by projL(w) = (δ0, b0)(δ1, b1) . . . (δn, bn) with bi = ai if
ai ∈ L and bi = ε otherwise. The untimed projection of w,
Untimed (w), is the word a0a1 . . . an of !∗.

A timed language is a subset of T !∗. Let L be a timed
language, the untimed language of L is Untimed (L) =
{v ∈ !∗ | ∃w ∈ L s.t. v = Untimed (w)}.
Definition 2.1 (Timed transition system (TTS)): A timed
transition system (TTS) is a tuple S = (Q, q0,!

ε,→),
where Q is a set of states, q0 is the initial state, ! a

finite alphabet of actions, and →⊆ Q × !ε ∪ R+ × Q

is the transition relation. We use the notation q
e→ q ′ if

(q, e, q ′) ∈→. Moreover, TTS should satisfy the classical
time-related conditions where d, d ′ ∈ R≥0: (i) time deter-

minism: (q
d→ q ′) ∧ (q

d→ q ′′) ⇒ (q ′ = q ′′), ii) time addi-

tivity: (q
d→ q ′) ∧ (q ′ d ′

→ q ′′) ⇒ (q
d+d ′
−→ q ′′), (iii) null de-

lay: ∀q : q
0→ q, and (iv) time continuity: (q

d→ q ′) ⇒
(∀d ′ ≤ d, ∃q ′′, q

d ′
→ q ′′).

A run ρ of S from q0 is a finite sequence of transi-
tions ρ = q0

e1→ q1
e2→ · · · en→ qn s.t. (qi, ei, qi+1) ∈→ for

0 ≤ i ≤ n − 1. We denote by last(ρ) the last state of
the sequence, i.e. the state qn. We let Runs(q,S) be the
set of runs from q in S and Runs(S) = Runs(q0,S).
We write q

ε⇒ q ′, if there is a run q
ε→ · · · ε→ q ′ from

q to q ′, i.e. ε⇒ def= (
ε→)∗. Given a ∈ ! ∪ R+, we de-

fine a⇒ def= ε⇒ a→ ε⇒. We write q0
∗→ qn, if there is a run

from q0 to qn. The set of reachable states in Runs(S)
is Reach(S) = {q | q0

∗→ q}. Each run can be written in
a normal form where delay and discrete transitions al-

ternate, i.e. ρ = q0
δ0→ e0→ q1

δ1→ e1→ · · · δn→ en→ qn+1
δ→ q ′

n+1.

The trace of ρ is trace(ρ) = (δ0, e0)(δ1, e1) . . . (δn, en).

Definition 2.2 (Timed automata (TA)): A timed au-
tomaton (TA) is a tuple A = (Q,q0, X,!ε, E, Inv) where:
q0 ∈ Q is the initial location; X is a finite set of posi-
tive real-valued clocks; !ε is a finite set of actions; E ⊆
Q × C(X) × !ε × 2X × Q is a finite set of edges. An edge
(q, γ , a, R, q ′) goes from q to q ′, with the guard γ ∈ C(X),
the action a, and the reset set R ⊆ X; Inv : Q → C(X)
is a function that assigns an invariant to any location; we
require that the atomic formulas of an invariant are of the
form x ◃▹ c with ◃▹∈ {<,≤}.

A finite (or untimed) automaton A = (Q, q0,!
ε, E)

is a special kind of timed automaton with X = ∅,
and, consequently, all the guards and invariants are vac-
uously true. A timed automaton A, is deterministic
if for (q1, γ , a, R, q2), (q1, γ

′, a, R′, q ′
2) ∈ E, γ ∧ γ ′ ̸=

false ⇒ q2 = q ′
2andR = R′. We recall that TA cannot al-

ways be determinised (i.e. find a deterministic TA which
accepts the same language as a non-deterministic one, see
Alur & Dill, 1994), and moreover, checking whether a TA
determinisable is undecidable (Finkel, 2005).

Definition 2.3 (Semantics of timed automata): The se-
mantics of a timed automaton A = (Q, q0, X,!ε, E, Inv)
is the TTS SA = (S, s0,!

ε,→) with S = Q × (R+)X,
s0 = (q0, 0⃗), and → defined as follows:

(q, v)
a→ (q ′, v′) iff ∃(q, γ , a, R, q ′)

∈ E such that

⎧
⎨

⎩

γ (v) = true
v′ = v[R (→ 0]
Inv(q ′)(v′) = true

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

4 G. Benattar et al.

(q, v)
δ→ (q, v′) iff

⎧
⎨

⎩

v′ = v + δ

∀δ′, 0 ≤ δ′ ≤ δ,

Inv(q)(v + δ′) = true

If s = (q, v) is a state of SA, we denote by s + δ

the (only) state reached after δ time units, i.e. s + δ =
(q, v + δ). The sets of runs of A is defined as Runs(A) =
Runs(SA), where SA is the semantics of A. A timed word
w ∈ T !∗ is generated by A if w = trace(ρ) for some
ρ ∈ Runs(A). The timed language generated by A, L(A)
is the set of timed words generated by A.

Definition 2.4 (Language equivalence): Two automata A

and B are language equivalent, denoted by A ≈L B, if
L(A) = L(B), i.e. they generate the same set of timed
words.

Definition 2.5 (Simulation): Let T1 = (S1, s
1
0 ,!ε,→1),

T2 = (S2, s
2
0 , !ε,→2) be two TTS. Let R ⊆ S1 × S2 be a

relation, s.t. R is total for S2. R is a weak simulation of T2

by T1 iff:

(1) s1
0Rs2

0 ,
(2) ∀(s, p) ∈ S1 × S2, such that sRp:

• If p
ε2→ p′ then ∃s ′ such that s

ε1→ s ′ and s ′Rp′,
• ∀a ∈ ! ∪ R+, if p

a2→ p′ then ∃s ′ such that s
a1→

s ′ and s ′Rp′.

T1 weakly simulates T2 if there exists a weak simulation
R of T2 by T1 and we note T1 ⊑W T2. Let A1 and A2 be two
TA, we say that A1 weakly simulates A2 if the semantics
of A1 weakly simulates the semantics of A2, and we note
A1 ⊑W A2.

Definition 2.6 (Cosimulation): Two timed automata A1

and A2 are cosimilar iff A1 ⊑W A2 and A2 ⊑W A1. We
note A1 ≈CW A2.

Definition 2.7 (Bisimulation): Two timed automata A1

and A2 are bisimilar iff there exists a simulation R of A2

by A1 such that R−1 is a weak simulation of A1 by A2. We
note A1 ≈W A2.

Note that when no ε transition exists, we obtain strong
versions of similarity and bisimilarity.

Definition 2.8 (Product of timed automata): Let
A1 = (Q1, q01, X1,!

ε, E1, Inv1) and A2 = (Q2, q02,

X2,!
ε, E2, Inv2) be two TA with X1 ∩ X2 = ∅. Let

!a ⊆ !. The synchronised product of A1 and A2, with
respect to !a , is the timed automaton A1 ×!a

A2 = (Q1 ×
Q2, (q01, q02), X1 ∪ X2,!

ε, E, Inv) where E is defined as
follows:

• ((q1, q2), γ1 ∧ γ2, a, R1 ∪ R2, (q ′
1, q

′
2)) ∈ E if a ∈

!a , (q1, γ1, a, R1, q
′
1) ∈ E1 and (q2, γ2, a, R2, q

′
2) ∈

E2;

• ((q1, q2), γ , a, R, (q ′
1, q

′
2)) ∈ E if a ∈ ! \ !a and{

(q1, γ , a, R, q ′
1) ∈ E1 and q ′

2 = q2

or (q2, γ , a, R, q ′
2) ∈ E2 and q ′

1 = q1

and where Inv((q1, q2)) = Inv1(q1) ∧ Inv2(q2).

It means that synchronisation occurs only for actions in
!a . When it is clear from the context, we omit the subscript
!a in ×!a

.
Moreover, in the sequel we will use two operators

on TA: the first one gives an abstracted automaton
and simply hides a set of labels L ⊆ !. Given a TA,
A = (Q, q0, X,!ε, E,Inv), and L ⊆ !, we define
the TA, A/L = (Q, q0, X, (!\L)ε, EL, Inv), where
(q, γ , a, R, q ′) ∈ EL ⇐⇒ (q, γ , a, R, q ′) ∈ E for a ∈
!\L and (q, γ , ε, R, q ′) ∈ EL ⇐⇒ (q, γ , a, R, q ′) ∈ E

for a ∈ L ∪ {ε}. The restricted automaton cuts transitions
labelled by the letters in L ⊆ !: given a TA, A = (Q,

q0, X,!, E, Inv), and L ⊆ !, we define the TA, A\L =
(Q, q0, X,!\L,EL, Inv), where (q, γ , a, R, q ′) ∈
EL ⇐⇒ (q, γ , a, R, q ′) ∈ E for a ∈ !\L.

We will also use some results on safety control for timed
games which have been introduced and solved in Maler,
Pnueli, and Sifakis (1995).

Definition 2.9 (Timed game automaton (TGA)): A TGA,
A = (Q, q0, X,!, E, Inv), is a timed automaton with its
set of actions ! partitioned into controllable (!c) and un-
controllable (!u) actions.

Let A be a TGA and Bad ⊆ Q × RX
+ be the set of bad

states to avoid. Bad can be written as ∪1≤i≤k(ℓi , Zi), with
each Zi defined as a conjunction of formulas of C(X) and
each ℓi ∈ Q . The safety control problem for (A,Bad) is
to decide whether there is a controller to constantly avoid
Bad . Let λ be a fresh special symbol not in !ε denoting
the action ‘do nothing’.

A controller C for A is a partial function from
Runs(A) to 2!c∪{λ}. We require that ∀ρ ∈ Runs(A), if
a ∈ C(ρ) ∩ !c then last(ρ)

a→ (q ′, v′) for some (q ′, v′) and

if λ ∈ C(ρ) then last(ρ)
δ→ (q ′, v′) for some δ > 0. A con-

troller C is state-based or memoryless whenever ∀ρ, ρ ′ ∈
Runs(A), last(ρ) = last(ρ ′) implies that C(ρ) = C(ρ ′).

Remark 1: We assume that a controller gives a set of ac-
tions that are enabled which differs from standard defini-
tions (Maler et al., 1995) where a controller only gives one
action. Nevertheless, for safety timed games, one computes
a most permissive controller (if there is one) which gives
for each state the largest set of actions which are safe. It fol-
lows that any reasonable (e.g. non-zeno) sub-controller of
this most permissive controller avoids the set of bad states.

C(A) defines ‘A supervised/restricted by C’ and is in-
ductively defined by its set of runs:

• (q0, 0⃗) ∈ Runs(C(A)),

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 5

q0 q2

q3

h

(a) Aa is not SNNI

q0

q1

q2
h

(b) Ab is SNNI

Figure 1. Examples for the SNNI property.

• if ρ ∈ Runs(C(A)) and ρ
e→ s ′ ∈ Runs(A), then

ρ
e→ s ′ ∈ Runs(C(A)) if one of the following three

conditions holds:

(1) e ∈ !u,
(2) e ∈ !c ∩ C(ρ),

(3) e ∈ R+ and ∀δ s.t. 0 ≤ δ < e, last(ρ)
δ→

last(ρ) + δ ∧ λ ∈ C(ρ
δ→ last(ρ) + δ).

C(A) can also be viewed as a TTS where each state
is a run of A and the transitions are given by the previ-
ous definition. C is a winning controller for (A,Bad) if
Reach(C(A)) ∩ Bad = ∅. For safety timed games, the re-
sults are the following (D’Souza & Madhusudan, 2002;
Maler et al., 1995):

• it is EXPTIME-complete to decide whether there is
a winning controller for a safety game (A,Bad);

• in case there is one, there is a most permissive con-
troller which is memoryless on the region graph of
the TGA A. This most permissive controller can be
represented by a TA. This also means that the set
of runs of C(A) is itself the semantics of a timed
automaton, that can be effectively built from A.

3. Formal definitions of non-interference properties

In the sequel, we will consider TA defined on a set of actions
! = !l ∪ !h with !l ∩ !h = ∅, where !h are the high-
level actions and !l the low-level actions. In order to define
the different classes of non-interference properties on an
automaton A, we are going to compare A\!h and A/!h

with respect to different criteria.

3.1 Strong non-deterministic non-interference
(SNNI)

The property SNNI has been introduced by Focardi and
Gorrieri (2001) as a trace-based generalisation of non-
interference for concurrent systems. SNNI has been ex-
tended to timed models in Gardey et al. (2005).

Definition 3.1: A timed automaton A is SNNI iff A\!h ≈L
A/!h.

Since finite automata are TA with no clocks, the defini-
tion also applies to finite automata.

Moreover, as L(A\!h) ⊆ L(A/!h), we can give a sim-
ple characterisation of the SNNI property.

Proposition 3.2: A timed automaton A, is SNNI, iff
L(A/!h) ⊆ L(A\!h).

Example 3.3: Let us consider the automaton Aa of Fig-
ure 1 (a) with !h = {h} and !l = {ℓ}. This automaton is
not SNNI, because L(A\!h) = ε whereas L(A/!h) = ℓ.
The automaton Ab is SNNI.

As demonstrated by the following examples 3.4 and 3.5,
a timed automaton A can be non-SNNI whereas its untimed
underlying automaton is SNNI and A can be SNNI whereas
its untimed underlying automaton is not.

Example 3.4: Let us consider the timed automaton Ag

of Figure 2 (a), with !h = {h} and !l = {ℓ}. It is not
SNNI since (2.5, ℓ) is accepted by Ag/!h but not by
Ag\!h. Its untimed underlying automaton Ah is SNNI since
L(Ah\!h) = {ℓ} = L(Ah/!h).

Example 3.5: Let us consider the timed automaton Aj of
Figure 3 (a), with !h = {h} at !l = {ℓ1, ℓ2}. It is SNNI,
since L(Aj\!h) = L(Aj/!h). Its untimed underlying au-
tomaton Ak is not SNNI since ℓ1 · ℓ2 is accepted by Ak/!h

but not by Ak\!h.

q0

q1

q2

q3

2

h

(a) Ag, a non SNNI timed
automaton

q0

q1

q2

q3

h

(b) Ah, the SNNI untimed
automaton associated to Ag

Figure 2. A non-SNNI timed automaton and its untimed under-
lying automaton which is SNNI.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

6 G. Benattar et al.

q0

q1

q3

q4

q2 q5

1, x > 2

1

h

1, x > 2

12, x < 2

(a) Aj , a SNNI timed automaton

q0

q1

q3

q4

q2 q5

1

1

h

1

12

(b) Ak, the non SNNI untimed automaton associ-
ated to Aj

Figure 3. An SNNI timed automaton and its untimed underlying automaton which is non-SNNI.

Example 3.6 (SNNI): Figure 4 gives examples of sys-
tems A(k) which are SNNI and not SNNI depending on the
value of integer k. The high-level actions are !h = {h} and
the low-level actions are !l = {l}. (δ, l) with 1 ≤ δ < 2 as
a trace of A(1)/!h but not of A(1)\!h and so, A(1) is
not SNNI. A(2) is SNNI as we can see that A(2)/!h ≈L
A(2)\!h.

Finally, since SNNI is based on language equivalence,
we have the following lemma:

Lemma 3.7: If A′ ≈L A, then A is SNNI ⇔ A′ is SNNI.

Proof: First, L(A/!h) = proj!l
(L(A)) = proj!l

(L(A′))
= L(A′/!h). Second, L(A\!h) = L(A) ∩ T !∗

l = L(A′)
∩ T !∗

l = L(A′\!h). !

3.2 Cosimulation strong non-deterministic
non-interference (CSNNI)

The CSNNI property has been introduced in Gardey et al.
(2005), and is based on cosimulation.

Definition 3.8: A timed automaton A is CSNNI iff
A\!h ≈CW A/!h.

Since A/!h ⊑W A\!h, we can give a simple charac-
terisation of CSNNI:
Proposition 3.9: A timed automaton A is CSNNI iff
A\!h ⊑W A/!h.

By restricting the class of TA considered, we obtain the
following result.

0

1

2

3

l, x ≥ 2

h, x ≥ k

l

Figure 4. Automaton A(k).

Example 3.10: Let us consider the automaton Ac of Fig-
ure 5 (a) with !h = {h} and !l = {ℓ1, ℓ2, ℓ3}. Ac is SNNI
but is not CSNNI, because no state of Ac\!l can simulate
the state q6. The automaton Ad of Figure 5(a) is CSNNI.
The state q1 of Ad\!l simulates the states q5 and q6.

We complete this sub-section by comparing SNNI and
CSNNI. Given two timed automata A1 and A2, A1 ⊑W A2

implies that L(A2) ⊆ L(A1). CSNNI is thus stronger than
SNNI as for each timed automaton A, A\!h ⊑W A/!h

implies that L(A/!h) ⊆ L(A\!h).
The converse holds when A\!h is deterministic.

Lemma 3.11: If A\!h is deterministic, then A is SNNI
implies that A is CSNNI.

q0

q1 q2

q3 q4

q5

q6

q7 q8

1

1

2 3

h

1

2

3

(a) Ac, a SNNI but not CSNNI automaton

q0

q1

q2 q3

q4

q5 q6

q7 q8

1

2

3

h

1

1

2 3

(b) Ad, a CSNNI automaton

Figure 5. CSNNI is stronger than SNNI.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 7

q0

q1

q2
h

(a) Ae, a CSNNI but not
BSNNI automaton

q0

q1

q2

q3

h

(b) Af , a BSNNI automaton

Figure 6. BSNNI is stronger than CSNNI.

Proof: As emphasised before, given two timed automata
A1 and A2, A1 ⊑W A2 implies thatL(A2) ⊆ L(A1). If A1 is
deterministic, thenL(A2) ⊆ L(A1) implies that A1 ⊑W A2.
To obtain the result, it suffices to take A1 = A\!h and
A2 = A/!h. !

3.3 Bisimulation strong non-deterministic
non-interference (BSNNI)

The BSNNI property has been introduced in Focardi and
Gorrieri (2001) and is based on bisimulation.

Definition 3.12: A timed automaton A is BSNNI iff
A\!h ≈W A/!h.

The automation Af of Figure 6(b) is BSNNI. Bisimula-
tion is stronger than cosimulation and we have for a timed
automaton A, if A is BSNNI, then A is CSNNI (and thus
A is SNNI).

As the following example demonstrates, there exists an
automaton which is CSNNI and not BSNNI.
Example 3.13: Let us consider the automaton Ae of
Figure 6(a) with !h = {h} et !l = {ℓ}. This automaton
is deterministic and SNNI, and therefore by lemma 3.11, it
is CSNNI. However, it is not BSNNI, since the state q2 of
Ae/!h has no bisimilar state in Ae\!h.

4. Verification of non-interference properties for
timed automata

In this section, we settle the complexity of non-interference
verification problems for TA.

4.1 SNNI verification

The SNNI verification problem (SNNI-VP) asks to check
whether the system A is SNNI.

For TA, this problem has been proved to be undecidable
in Gardey et al. (2005) and the proof is based on the fact
that language containment for TA is undecidable (Alur &
Dill, 1994). However, if we consider the sub-class of timed
automata A such that A\!h is deterministic, then the prob-
lem becomes decidable. In the sequel, we called dTA the
class of timed automata A such that A\!h is determinis-

tic. Remark that, since finite automata are a special case
of timed automata (TA with no clock), dTA also contains
finite automata.

Theorem 4.1: The SNNI-VP is PSPACE-complete for dTA.

Proof: Let A1 and A2 be two TA. Checking whether
L(A2) ⊆ L(A1) with A1 a deterministic TA is PSPACE-
complete (Alur & Dill, 1994). Checking L(A/!h) ⊆
L(A\!h) can thus be done in PSPACE if A\!h is deter-
ministic. Using Proposition 3.2, it follows that SNNI-VP is
PSPACE-easy for dTA.

For PSPACE-hardness, we reduce the language inclu-
sion problem L(A2) ⊆ L(A1), with A1 a deterministic TA,
to the SNNI-VP. Let A1 = (Q1, q01, X1,!, E1, Inv1) be
a deterministic TA and A2 = (Q2, q02, X2,!, E2, Inv2) a
TA.2 We let h ̸∈ ! be a fresh letter, x ̸∈ X1 ∪ X2 be a fresh
clock, and define A12 = ({q0

12} ∪ Q1 ∪ Q2, q
0
12, X1 ∪ X2 ∪

{x},!ε ∪ {h}, E12, Inv12) be the timed automaton defined
(as shown in Figure 7) as follows:

• the transition relation E12 contains E1 ∪ E2 and
the additional transitions (q0

12, true, h, ∅, q02) and
(q0

12, true, ε, ∅, q01);
• Inv 12(q) = Inv i(q) if q ∈ Qi, i ∈ {1, 2}, and

Inv 12(q0
12) = [x ≤ 0].

We let !l = ! and !h = {h}. We prove that A12 is
SNNI iff L(A2) ⊆ L(A1). This is easily established as

A12 is SNNI

iff L(A12/!h) ⊆ L(A12 !h) [Proposition 3.2]

iff L(A1) ∪ L(A2) ⊆ L(A1)

iff L(A2) ⊆ L(A1).

Thus, the SNNI-VP is PSPACE-complete for dTA. !

For non-deterministic finite automata A1 and A2,
checking language inclusion L(A1) ⊆ L(A2) is PSPACE-
complete (Stockmeyer & Meyer, 1973). Then, using the
same proof with A1 being a non-deterministic finite au-
tomaton as follows.

Corollary 4.2: The SNNI-VP is PSPACE-complete for non-
deterministic finite automata.

Moreover, when A2 is a deterministic finite automaton,
language containment can be checked in PTIME and thus
we have the following corollary.

Corollary 4.3: For finite automata belonging to dTA, the
SNNI-VP is PTIME.

Table 1 summarises the results on the complexity of the
SNNI-VP.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

8 G. Benattar et al.

q0
12

[x ≤ 0]
q01

q02

h

ε
A1

A2

Figure 7. The timed automaton A12.

Table 1. Complexity if SNNI-VP.

Timed automata Finite automata

A\!h is
deterministic
(dTA)

PSPACE-complete
(Thm 4.1)

PTIME (Cor. 4.3)

General Case Undecidable
(Gardey et al., 2005)

PSPACE-complete
(Cor. 4.2)

4.2 Verification of CSNNI and BSNNI properties

BSNNI-VP and CSNNI-VP are decidable for TA (Gardey
et al., 2005) since simulation and bisimulation are decid-
able. For finite automata, the complexity of BSNNI-VP and
CSNNI-VP is known to be PTIME (Cassez et al., 2007).
We settle here the complexity of those problems for tTA.

Theorem 4.4: The CSNNI-VP and BSNNI-VP are
EXPTIME-complete for TA.

Proof: Strong timed bisimilarity and simulation pre-order
are both EXPTIME-complete for TA. The EXPTIME-
hardness is established in Laroussinie and Schnoebelen
(2000), where it is shown that any relation between sim-
ulation pre-order and bisimilarity is EXPTIME-hard for
TA.

The EXPTIME-easiness for strong timed bisimulation
was established in C̆erāns (1992) and for simulation pre-
order in Tasiran, Alur, Kurshan, and Brayton (1996).

To establish EXPTIME-completeness for CSNNI-VP
and BSNNI-VP, we show that these problems are equivalent
to their counterparts for TA.

To do this, we use the automata A1, A2, and A12 already
defined in the proof of Theorem 4.1.

We show that A1 simulates A2 iff A12 is CSNNI.

Assume that A1 simulates A2. There exists a rela-
tion R, s.t. (1) (q01, 0⃗X1)R(q02, 0⃗X2) and (2) for each state
(s2, x⃗2), there exists (s1, x⃗1) s.t. (s1, x⃗1)R(s2, x⃗2), and when-
ever (s2, x⃗2)

a→ (s ′
2, x⃗2

′) for a ∈ ! ∪ R+, then (s1, x⃗1)
a→

(s ′
1, x⃗1

′) and (s ′
1, x⃗1

′)R(s ′
2, x⃗2

′).
We define a relation R′ for each (ℓ, x⃗1x⃗2x) of A12/!h

to a state (ℓ′, x⃗1
′x⃗2

′x ′) of A12\!h as follows:

• if ℓ = q0
12 then (ℓ, x⃗1x⃗2x)R′(ℓ, x⃗1

′x⃗2
′x ′);

• if ℓ ∈ Q1, then (ℓ, x⃗1x⃗2x)R′(ℓ, x⃗1x⃗2
′x ′);

• if ℓ ∈ Q2, then (ℓ, x⃗1x⃗2x)R′(ℓ′, x⃗1
′x⃗2

′x ′) iff
(ℓ, x⃗2)R(ℓ′, x⃗1);

R′ is a simulation of A12/!h by A12\!h:

• the initial states of the two TA are in relation;
• assume (s, x⃗1x⃗2x)

a→A12/!h
(s ′, x⃗1

′x⃗2
′x ′); If s ∈

{q0
12} ∪ Q1, then clearly it is simulated by the

same state in A12\!h. Otherwise, if s ∈ Q2, then
there exists a state (ℓ′, x⃗1x⃗2

′x ′) in A12\!h s.t.
(s, x⃗1x⃗2x)R′(s ′, x⃗1

′x⃗2
′x ′): by definition of R′, we can

take any (s ′, x⃗1
′x⃗2

′x ′) with (s, x⃗2)R(s ′, x⃗1
′). It is easy

to see that because A1 can simulate A2, from there
on, R′ is indeed a simulation relation. Thus, A12/!h

and A12\!h are cosimilar by Proposition 3.9.

Now assume conversely that there is a simulation R′ of
A12/!h by A12\!h. We can define a simulation relation of
A2 by A1 as follows: each state (s, x⃗1x⃗2x) with s ∈ Q2 of
A12/!h is simulated by a state (s ′, x⃗1

′x⃗2
′x ′) with s ′ ∈ Q1.

We then define R by (s, x⃗2)R(s ′, x⃗1
′). Again, it is easy to

see that R is a simulation relation.
It follows that CSNNI is EXPTIME-complete.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 9

Table 2. Results for CSNNI-VP and BSNNI-VP.

Timed automata Finite automata

CSNNI-VP EXPTIME-C
(Theorem 4.4)

PTIME (Cassez
et al., 2007)

BSNNI-VP EXPTIME-C
(Theorem 4.4)

PTIME (Cassez
et al., 2007)

Now assume that A1 and A2 are bisimilar. We can define
the relation R′ exactly as above and this time it is a weak
bisimulation between A12\!h and A12/!h.

If A12 is BSNNI, the bisimulation relation R′ between
A12\!h and A12/!h induces a bisimulation relation R be-
tween A1 and A2: it suffices to build R as the restriction of
R′ between states with a discrete component in Q1 and a
discrete component in Q2.

As checking bisimulation between TA is also
EXPTIME-complete, the EXPTIME-completeness of
BSNNI-VP for TA follows. !

Table 2 summarises the results on the verification of the
CSNNI and BSNNI properties.

5. The SNNI control problem

The previous non-interference verification problem con-
sists of checking whether an automaton A has the non-
interference property. If the answer is ‘no’, one has to inves-
tigate why the non-interference property is not true, modify
A, and check the property again. In contrast to the veri-
fication problem, the synthesis problem indicates whether
there is a way of restricting the behaviour of users to ensure
a given property. Thus, we consider that only some actions
in the set !c, with !c ⊆ !h ∪ !l , are controllable and can
be disabled. We let !u = ! \ !c denote the actions that
are uncontrollable and thus cannot be disabled. Note that,
contrary to Cassez et al. (2007), we release the constraint
!c = !h. The motivations for this work are many fold. Re-
leasing !c = !h is interesting in practice because it enables
one to specify that an action from !h cannot be disabled
(a service must be given), while some actions of !l can be
disabled. We can view actions of !l as capabilities of the
low-level user (e.g. pressing a button), and it thus makes
sense to prevent the user from using the button for instance
by disabling/hiding it temporarily.

Recall that a controller C for A gives for each run ρ of
A the set C(ρ) ∈ 2!c∪{λ} of actions that are enabled after
this particular run. The SNNI-control problem (SNNI-CP),
we are interested in, is the following:

Is there a controller C s.t . C (A) is SNNI ?

(SNNI-CP)

The SNNI-controller synthesis problem (SNNI-CSP)
asks to compute a witness when the answer to the SNNI-
CP is ‘yes’.

0

3

1

2

a

h

a

Figure 8. Automaton D.

While the control properties for SNNI seem quite close
to the corresponding classical problems of control with par-
tial observability, we show in Section 5.4 that, surprisingly,
the link between the two is not trivial.

5.1 Preliminary remarks

First, we motivate our definition of controllers that are
mappings from Runs(A) to 2!c∪{λ}. The common defi-
nition of a controller in the literature is a mapping from
Runs(A) to !c ∪ {λ}. Indeed, for the safety (or reach-
ability) control problem, one can compute a mapping
M : Runs(A) → 2!c∪{λ} (most permissive controller), and
a controller C ensures the safety goal iff C(ρ) ∈ M(ρ). This
implies that any sub-controller of M is a good controller.
This is not the case for SNNI, even for finite automata, as
the following example shows.

Example 5.1: Let us consider the automaton D of Figure 8
with !c = {a, h}. The largest sub-system of D which is
SNNI is D itself. Disabling a from state 0 will result in an
automaton which is not SNNI.

We are thus interested in computing the largest (if there
is such) sub-system of A that we can control which is SNNI.
Second, in our definition, we allow a controller to forbid any
controllable action. In contrast, in the literature, a controller
should ensure some liveness and never block the system. In
the context of security property, it makes sense to disable
everything if the security policy cannot be enforced other-
wise. This makes the SNNI-CP easy for finite automata.

5.2 SNNI-VP versus SNNI-CP

SNNI-CP is harder than SNNI-VP since SNNI-VP reduces
to SNNI-CP by taking !c = ∅. Note that this is not true
if we restrict to the sub-class of control where !c = !h.
Indeed, in this case, SNNI-CP is always true (and then
decidable) since the controller which forbids all controllable
transitions make the system SNNI.

We then have the following theorem.

Theorem 5.2: For general TA, SNNI-CP and SNNI-CSP
are undecidable.

Proof: SNNI-CP obviously reduces to SNNI-CSP. SNNI-
VP reduces to SNNI-CP by taking !c = ∅. SNNI-VP is
undecidable for non-deterministic TA. !

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

10 G. Benattar et al.

We will now show that SNNI-CP reduces to the
SNNI-VP for finite automata.
Proposition 5.3: Let A be a finite automaton. There exists
a controller C such that C(A) is SNNI iff A\!c is SNNI.

Proof: Since time is not taken into account in untimed
automata, we can have C(ρ) = ∅ for finite automaton (for
general timed automaton, this would mean that we block
the time). The proof of the theorem consists of proving that
if a finite automaton can be restricted to be SNNI, then
disabling all the !c actions is a solution. Let C∀ be the
controller defined by C∀(ρ) = ∅. We prove the following:
if C is a controller, s.t. C(A) is SNNI, then C∀(A) is SNNI.

Assume a finite automaton D is SNNI. Let e ∈ !h ∪ !l

and let Le be the set of words containing at least one e.
Depending on the type of e, we have the following:

• if e ∈ !l , then L((D\{e})\!h) = L(D\!h) \ Le,
and as D is SNNI, it is also equal toL(D/!h) \ Le =
L((D\{e})/!h);

• if e ∈ !h, L((D\{e})/!h) ⊆ L(D/!h) =
L(D\!h) = L((D\{e})\!h).

Therefore, if D is SNNI, D\L is SNNI, ∀L ⊆ !. Since
L(C∀(D)) = L(D\!c), if D is SNNI, then D\!c is also
SNNI and, therefore, C∀(D) is SNNI.

Let A be the TA we want to restrict. Assume there is
a controller C, s.t. C(A) is SNNI. C∀(C(A)) is SNNI, so
C∀(C(A)) = C∀(A) is also SNNI which means that A\!c

is SNNI. This proves that ∃C s.t. C(A) is SNNI ⇔ A\!c

is SNNI. !
Hence the following result.

Theorem 5.4: For finite automata, the SNNI-CP is
PSPACE-complete.

Proof: Let A be a finite automaton. By Proposition 5.3,
it is equivalent to check that A\!c is SNNI to solve the
SNNI-CP for A and this can be done in PSPACE. PSPACE-
hardness comes from the reduction of SNNI-VP to SNNI-
CP, by taking !c = ∅. !

Moreover, since the SNNI-CP reduces to the SNNI-VP
for finite automata, and from Corollary 4.3, we have the
following result:

Corollary 5.5: For finite automata belonging to dTA, the
SNNI-CP is PTIME.

Proposition 5.3 does not hold for general TA as the
following example demonstrates.

Example 5.6: Figure 9 gives an example of a timed au-
tomaton H with high-level actions !h = {h} and low-level
actions !l = {a, b}. Assume !c = {a}. Notice that H\!c

is not SNNI. Let the state-based controller C be defined by
C(0, x) = {a, λ} when H is in state (0, x) with x < 4 and
C(0, x) = {a} when x = 4. Then, C(H) is SNNI. In this
example, when x = 4, we prevent time from elapsing by

0

1

2

3

a, x > 1

h, x > 4

b

Figure 9. The Automaton H .

forcing the firing of a which indirectly disables action h. To
do this we just have to add an invariant [x ≤ 4] to location
0 of H , and this cuts out the dashed transitions rendering
C(H) SNNI.

5.3 Algorithms for SNNI-CP and SNNI-CSP

In this section, we first prove that the SNNI-CP is
EXPTIME-hard for dTA. Then, we give an EXPTIME al-
gorithm to solve the SNNI-CP and SNNI-CSP.

Theorem 5.7: For dTA, the SNNI-CP is EXPTIME-hard.

Proof: The safety control problem for TA is EXPTIME-
hard (Henzinger & Kopke, 1997). In the proof of this
theorem, Henzinger and Kopke use TA where the con-
troller chooses an action and the environment resolves
non-determinism. The hardness proof reduces the halting
problem for alternating Turing machines using polynomial
space to a safety control problem. In our framework, we
use TA with controllable and uncontrollable actions. It is
not difficult to adapt the hardness proof of Henzinger and
Kopke (1997) to TA which are deterministic with respect
to !c actions and non-deterministic with respect to !u ac-
tions. As !u transitions can never be disabled (they act only
as spoiling actions), we can use a different label for each
uncontrollable transition without altering the result in our
definition of the safety control problem. Hence, the safety
control problem as defined in Section 2 is EXPTIME-hard
for deterministic TA (with controllable and uncontrollable
transitions). This problem can be reduced to the safety
control problem of TA with only one state bad. We can
now reduce the safety control problem for deterministic
TA which is EXPTIME-hard to the SNNI control problem
on dTA. Let A = (Q ∪ {bad}, q0, X, !c ∪ !u, E, Inv) be
a TGA, with !c (resp. !u) the set of controllable (resp.
uncontrollable) actions, and bad a location to avoid. We
define A′ by adding to A two uncontrollable transitions:
(bad, true, h, ∅, qh) and (qh, true, l, ∅, ql), where qh and
ql are fresh locations with invariant true. l and h are
two fresh uncontrollable actions in A′. We now define
!h = {h} and !l = !c ∪ !u ∪ {l} for A′. By definition
of A′, for any controller C, if location Bad is not reach-
able in C(A′), then the actions h and then l cannot be
fired. Thus, if there is controller C for A which avoids
Bad , the same controller C renders A′ SNNI. Now, if there
is a controller C ′ s.t. C ′(A′) is SNNI, it must never en-
able h: otherwise, a (untimed) word w.h.l would be in

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 11

Untimed (L(C ′(A′)/!h)) but as no untimed word contain-
ing an l can be in Untimed (L(C ′(A′)\!h)), and thus C ′(A′)
would not be SNNI. Notice that it does not matter whether
we require the controllers to be non-blocking (mappings
from Runs(A) to 2!c∪{λ} \ ∅) or not as the reduction holds
in any case. !

To compute the most permissive controller (and we will
also prove there is one), we build a safety game and solve
a safety control problem. It may be necessary to iterate this
procedure. Of course, we restrict our attention to TA in the
class dTA for which the SNNI-VP is decidable.

Let A = (Q, q0, X,!h ∪ !l , E, Inv) be a TA s.t.
A\!h is deterministic. The idea of the reduction follows
from the following remark: we want to find a controller
C s.t. L(C(A)\!h) = L(C(A)/!h). For any controller C,
we have L(C(A)\!h) ⊆ L(C(A)/!h) because each run of
C(A)\!h is a run of C(A)/!h). To ensure SNNI we must
have L(C(A)/!h) ⊆ L(A\!h): indeed, A\!h is the largest
language that can be generated with no !h actions, so a
necessary condition for enforcing SNNI is L(C(A)/!h) ⊆
L(A\!h). The controller C(A) indicates what must be
pruned out in A to ensure the previous inclusion. Our algo-
rithm thus proceeds as follows: we first try to find a con-
troller C1 which ensures that L(C1(A)/!h) ⊆ L(A\!h). If
L(C1(A)/!h) = L(A\!h), then C1 is the most permissive
controller that enforces SNNI. It could be that what we had
to prune out to ensure that L(C1(A)/!h) ⊆ L(A\!h) does
not render C1(A) SNNI. In this case, we may have to iterate
the previous procedure on the new system C1(A).

We first show how to compute C1. As A\!h is deter-
ministic, we can construct A2 = (Q ∪ {qbad}, q2

0 , X2,!h ∪
!l , E2, Inv2) which is a copy of A \ !h (with clock renam-
ing) with qbad being a fresh location and s.t. A2 is a complete
(i.e. L(A2) = T !∗) version of A\!h (A2 is also determin-
istic). We write as last2(w) the state (q, v) reached in A2

after reading a timed word w ∈ T !∗. A2 has the property
that w ∈ L(A\!h) if the state reached in A2 after reading
w is not in Bad with Bad = {(qbad, v) | v ∈ RX

+}.
Fact 5.8: : Let w ∈ T !∗. Then, w ̸∈ L(A\!h) ⇐⇒
last2(w) ∈ Bad .

We now define the product Ap = A ×!l
A2 and the set of

bad states, Bad⊗ of Ap to be the set of states where A2 is
in Bad .

p→ denotes the transition relation of the semantics
of Ap and s0

p the initial state of Ap. When it is clear from

the context we omit the subscript p in
p→.

Lemma 5.9: Let w ∈ L(A). Then, there is a run ρ ∈
Runs(Ap) s.t. ρ = s0

p

w p→ s with s ∈ Bad⊗ iff proj!l
(w) ̸∈

L(A\!h).

The proof follows easily from Fact 5.8. Given a run
ρ in Runs(Ap), we let ρ|1 be the projection of the run ρ

on A (uniquely determined) and ρ|2 be the unique run3 in
A2 whose trace is proj!l

(trace(ρ)). The following theorem

proves that any controller C s.t. C(A) is SNNI can be used
to ensure that Bad⊗ is not reachable in the game Ap.

Lemma 5.10: Let C be a controller for A s.t. C(A) is SNNI.
Let C⊗ be a controller on Ap defined by C⊗(ρ ′) = C(ρ ′

|1).
Then, Reach(C⊗(Ap)) ∩ Bad⊗ = ∅.

Proof: First, C⊗ is well-defined because ρ ′
|1 is uniquely

defined. Let C be a controller for A s.t. C(A) is SNNI. As-
sume Reach(C⊗(Ap)) ∩ Bad⊗ ̸= ∅. By definition, there
is a run ρ ′ in Runs(C⊗(Ap)). such that

ρ ′ = ((q0, q
2
0), (0⃗, 0⃗))

e1→ ((q1, q
′
1), (v1, v

′
1))

e2→ · · ·
en→ ((qn, q

′
n), (vn, v

′
n))

en+1−→ ((qn+1, q
′
n+1), (vn+1, v

′
n+1))

with ((qn+1, q
′
n+1), (vn+1, v

′
n+1)) ∈ Bad⊗ and we can as-

sume (q ′
i , v

′
i) ̸∈ Bad for 1 ≤ i ≤ n (and q2

0 ̸∈ Bad). Let
ρ = ρ ′

|1 and w = proj!l
(trace(ρ ′)) = proj!l

(trace(ρ)).
We can prove (1): ρ ∈ Runs(C(A)) and (2): w ̸∈
L(C(A)\!h). (1) directly follows from the definition
of C⊗. This implies that w ∈ L(C(A)/!h). (2) fol-
lows from Lemma 5.9. By (1) and (2), we obtain
that w ∈ L(C(A)/!h) \ L(C(A)\!h), i.e. L(C(A)/!h) ̸=
L(C(A)\!h) and so C(A) does not have the SNNI prop-
erty which is a contradiction. Hence Reach(C⊗(Ap)) ∩
Bad⊗ = ∅. !

If we have a controller which solves the safety game
(Ap,Bad⊗), we can build a controller which ensures that
L(C(A)/!h) ⊆ L(A\!h). Notice that as emphasised be-
fore, this does not necessarily ensure that C(A) is SNNI.

Lemma 5.11: Let C⊗ be a controller for Ap s.t.
Reach(C⊗(Ap)) ∩ Bad⊗ = ∅. Let C(ρ) = C⊗(ρ ′) if ρ ′

|1 =
ρ. C is well-defined and L(C(A)/!h) ⊆ L(A\!h).

Proof: Let ρ = (q0, 0⃗)
e1→ (q1, v1)

e2→ · · · en→ (qn, vn) be
a run of A. Since A2 is deterministic and com-
plete, there is exactly one run ρ ′ = ((q0, q0), (0⃗, 0⃗))

e1→
((q1, q

′
1), (v1, v

′
1))

e2→ · · · en→ ((qn, q
′
n), (vn, v

′
n)) in Ap s.t.

ρ ′
|1 = ρ. Therefore, C is well-defined. Now, assume there

is some w ∈ L(C(A)/!h) \ L(A\!h). Then, there is a run
ρ in Runs(C(A)) ⊆ Runs(A) s.t. proj!l

(trace(ρ)) = w,
there is a unique run ρ ∈ Runs(Ap) s.t. ρ ′

|1 = ρ and
trace(ρ ′) = w. First, by Lemma 5.9, last(ρ ′) ∈ Bad⊗. Sec-
ond, this run ρ ′ is in Runs(C⊗(Ap)) because of the defini-
tion of C. Hence, Reach(C⊗(Ap)) ∩ Bad⊗ ̸= ∅ which is
a contradiction. !

It follows that if C⊗ is the most permissive controller
for Ap, then C(A) is a timed automaton (and can be effec-
tively computed) because the most permissive controller
for safety timed games is memoryless. More precisely, let
RG(Ap) be the the region graph of Ap. C is memoryless
on RG(Ap\!h) because A2 is deterministic. The memory

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

12 G. Benattar et al.

required by C is at most RG(A\!h) on the rest of the region
graph of RG(Ap).

Assume that the safety game (Ap,Bad⊗) can be won
and C⊗ is the most permissive controller. Let C be the
controller obtained using Lemma 5.11. Controller C en-
sures that L(C(A)/!h) ⊆ L(A\!h). But as the following
example shows, it may be the case that C(A) is not SNNI.

Example 5.12: Consider the timed automaton K on the
left of Figure 10 with !h = {h} and !c = {a}.

We can compute the complete version of K \ !h, which
we call K2. This is the middle automaton in Figure 10.

Then, we compute the product K ×!l
K2 of K and K2

with synchronisation only on the !l actions. This corre-
sponds to the rightmost automaton in Figure 10.

Notice that there is only one location with a second
component equal to Bad in this product. So Bad⊗ =
{(3,Bad)}. By a classical safety control algorithm, we can
then compute the most permissive controller C⊗ to avoid
Bad⊗, which consists in cutting the a between locations 0
and 1 at all times, because a is the only controllable action.

By projecting C⊗ on the first component as defined
in Lemma 5.11, we obtain C: C(K) as given by the sub-
automaton of K with the plain arrows. C(K) is obviously
not SNNI.
Example 5.13: For the example of A(1) in Figure 4, if we
compute C as described above, we obtain C(A(1)) = A(2)
and, moreover, L(C(A(1))/!h) = L(A(1)\!h). And, then
the most permissive sub-system which is SNNI is given by
C(A(1)) = A(2) (the guard x ≥ 1 of A(1) is strengthened).

The example of Figure 10 shows that computing the
most permissive controller on Ap is not always sufficient.
Actually, we may have to iterate the computation of the
most permissive controller on the reduced system C(A).

Lemma 5.14: Consider the controller C as defined in
Lemma 5.11. If C(A)\!h ≈L A\!h, then C(A) is SNNI.

Proof: If C(A)\!h ≈L A\!h, then L(C(A)/!h) ⊆
L(A\!h) = L(C(A)\!h). As L(C(A)\!h) ⊆
L(C(A)/!h) is always true, L(C(A)/!h) = L(C(A)\!h)
and, therefore, C(A) is SNNI. !

Let ⊥ be the symbol that denotes non-controllability
(or the non-existence of a controller). We inductively define
the sequence of controllers Ci and timed automata Ai as
follows:

• Let C0 be the controller defined by C0(ρ) = 2!c∪{λ}

and A0 = C0(A) = A.
• Let Ai

p = Ai ×!l
Ai

2 and C⊗
i+1 be the most permis-

sive controller for the safety game (Ai
p,Bad⊗

i) (⊥ if
no such controller exists). We use the notation Bad⊗

i

because this set depends on Ai
2. We define Ci+1 us-

ing Lemma 5.11: Ci+1(ρ) = C⊗
i+1(ρ ′) if ρ ′

|1 = ρ. Let
Ai+1 = Ci+1(Ai).

By Lemma 5.14, if Ci+1(Ai)\!h ≈L Ai\!h, then
Ci+1(Ai) is SNNI. Therefore, this condition is a suffi-
cient condition for the termination of the algorithm defined
above.

Lemma 5.15: There exists an index i ≥ 1 s.t. Ci(Ai−1) is
SNNI or Ci = ⊥.

Proof: We prove that the region graph of Ci+1(Ai) is a sub-
graph of the region graph of C1(A0) for i ≥ 1. By Lemma
5.11 (and the remark following it), C1(A0) is a sub-graph
of RG(A × A2). Moreover, C1 is memoryless on A\!h

and requires a memory of less than |RG(A\!h)| on the
remaining part. Assume on this part, a node of RG(A × A2)
is of the form ((q, r), k) where q is a location of A and r a
region of A and k ∈ {1, |RG(A\!h)|}.

Assume RG(Ak) is a sub-graph of RG(Ak−1) for k ≥ 2
and RG(Ak−1\!h) is a sub-graph of RG(A\!h). Using
Lemma 5.11, we can compute Ak = Ck(Ak−1) and (1)
RG(Ak\!h) is a sub-graph of Ak−1\!h and (2) the mem-
ory needed for C⊗

k on the remaining part is less than
|RG(Ak−1)|. Actually, because Ak−1\!h is deterministic,
no more memory is required for Ck . Indeed, the mem-
ory corresponds to the nodes of Ak\!h. Thus, a node
of RG(Ak) which is not in RG(Ak\!h) is of the form
((q, r), k, k′) with k = k′ or k′ = qbad . This implies that
RG(Ak) is a sub-graph of RG(Ak−1).

The most permissive controller C⊗
i will either disable

at least one controllable transition of Ai−1
p \!h or keep

all the controllable transitions of Ai−1
p \!h. In the latter

case, Ai\!h = Ai−1\!h, and otherwise, |RG(Ai\!h)| <

|RG(Ai−1\!h)|. This can go on at most |RG(A\!h)| steps.
In the end, either Ai\!h = Ai−1\!h, and this implies that
Ai\!h ≈L Ai−1\!h (Lemma 5.14) or it is impossible to
control Ai−1 and Ci = ⊥. In any case, our algorithm ter-
minates in less than |RG(A)| steps. !

To prove that we obtain the most permissive controller
which enforces SNNI, we use the following lemma.

Lemma 5.16: If M is a controller such that
L(M(A)/!h) = L(M(A)\!h), then ∀i ≥ 0 and ∀ρ ∈
Runs(A), M(ρ) ⊆ Ci(ρ).

Proof: The proof is by induction:

• For i = 0, it holds trivially.
• Assume that the lemma holds for indices up until

i. Thus, we have Runs(M(A)) ⊆ Runs(Ai). There-
fore, we can define M over Ai and M(Ai) is SNNI. By
Lemma 5.10, M⊗ is a controller for the safety game
(Ai

p,Bad⊗
i), therefore ,M⊗(ρ ′) ⊆ C⊗

i+1(ρ ′) because
C⊗

i+1 is the most permissive controller. This implies
that M(ρ) ⊆ Ci+1(ρ) by definition of Ci+1.

!

Using Lemma 5.15, the sequence Ci converges to a fix
point. Let C∗ denote this fix point.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 13

0

1 2 3

4 5
a, x ≥ 2

h

h b

a, x ≥ 2

(K)

0

1

Bad
a, x ≥ 2

a, x < 2

b
a, b

a, b

(K2)

(0, 0)

(1, 1) (2, 1) (3,Bad)

(4, 0) (5, 1)

a, x ≥ 2

h

h b

a, x ≥ 2

(K ×Σl K2)

Figure 10. The Automata K , K2, and K ×!l
K2.

Lemma 5.17: C∗ is the most permissive controller for the
SNNI-CSP.
Proof: Either C∗ = ⊥ and there is no way of en-
forcing SNNI (Lemma 5.10), or C∗ ̸= ⊥ is such
that L(C∗(A)/!h) = L(C∗(A)\!h) by Lemma 5.11. As
for any valid controller M such that L(M(A)/!h) =
L(M(A)\!h), we have M(ρ) ⊆ C∗(ρ) for each ρ ∈
Runs(A) (Lemma 5.16), the result follows. !

Lemma 5.15 proves the existence of a bound on the
number of times we have to solve safety games. For a timed
automaton A in dTA, let |A| be the size of A.

Lemma 5.18: For a dTA A, C∗ can be computed in
O(24.|A|).

Proof: As the proof of Lemma 5.15 shows, the region
graph of Ai is a sub-graph of the region graph of A1, ∀i ≥ 1,
and the algorithm ends in less than |RG(A)| steps. Comput-
ing the most permissive controller for Ai

p, avoiding Bad⊗
i

can be done in linear time in the size of the region graph
of Ai

p. As RG(Ai) is a sub-graph of RG(A1), RG(Ai
p) is a

sub-graph of RG(A1
p). Therefore, we have to solve at most

|RG(A)| safety games of sizes at most |RG(A1
p)|. As A1

is a sub-graph of A0
p = A0 ×!l

A0
2, |RG(A1)| ≤ |RG(A)|2.

And, as A1
p = A1 ×!l

A1
2, |RG(A1

p)| ≤ |RG(A)|3. There-
fore, C∗ can be computed in O(|RG(A)|.|RG(A1

p)|) =
O(|RG(A)|4) = O(24.|A|). !
Theorem 5.19: For dTA, the SNNI-CP and SNNI-CSP are
EXPTIME-complete.

For the special case of finite automata, we even have the
following:

Lemma 5.20: For finite automata, C∗ = C2.

Proof: We know that L(C2(A)\!h) ⊆ L(C1(A)\!h).
Suppose that ∃w s.t. w ∈ L(C1(A)\!h) and w ̸∈
L(C2(A)\!h) (w cannot be the empty word). We can
assume that w = u.l with u ∈ !∗

l , l ∈ !l ∩ !c and u ∈
L(C1(A)\!h) and u.l ̸∈ L(C2(A)\!h) (l is the first let-
ter which witnesses the non-membership property). If l

had to be pruned in the computation of C2, it is because
there is a word u.l.m with m ∈ !∗

u s.t. proj!l
(u.l.m) ∈

L(C1(A)/!h) but proj!l
(u.l.m) ̸∈ L(C1(A)\!h). But by

•
q0

•
q0

h
Σl

A

Figure 11. Automaton B.

definition of C1, L(C1(A)/!h) ⊆ L(A\!h) (Lemma
5.11), and thus proj!l

(u.l.m) ∈ L(A\!h). As u.l ∈
!∗

l , proj!l
(u.l.m) = u.l.proj!l

(m) and proj!l
(m) ∈ !∗

u .
Since u.l ∈ L(C1(A)\!h) and proj!l

(m) ∈ !∗
u , we have

u.l.proj!l
(m) ∈ L(C1(A)\!h) which is a contradiction.

Thus, L(C2(A)\!h) = L(C1(A)\!h) which is our stop-
ping condition by Lemma 5.14 and thus C∗ = C2. !

It follows that
Theorem 5.21: For a finite automaton A in dTA (i.e. such
that A\!h is deterministic), the SNNI-CSP is PSPACE-
complete.

As untimed automata can always be determinised, we
can extend our algorithm to untimed automata when A\!h

non-deterministic. It suffices to determinise Ai
2, i = 1, 2.

Theorem 5.22: For a finite automaton A such that A\!h

is non-deterministic, the SNNI-CSP can be solved in EXP-
TIME.
Proposition 5.23: There is a family of finite automata
(Ai)i≥0 such that (1) there is a most permissive controller
D∗

i s.t. D∗
i (Ai) is SNNI and (2) the memory required by D∗

i

is exponential in the size of Ai .

Proof: Let A be a finite automaton over the alphabet !.
Define the automaton A′ as given by Figure 11. Assume the
automaton B is the sub-automaton of A′ with initial state
q ′

0. We take !h = {h} = !u and !l = ! = !c. The most
permissive controller D, s.t. D(A′) is SNNI, generates the
largest sub-language of L(A′) s.t. L(A′\!h) = L(A′/!h),
and thus it generates L(A) = L(A′\!h).

The controller D is memoryless on A′\!h as empha-
sised in Lemma 5.11. It needs finite memory on the re-
maining part, i.e. on B. The controller D on B gives

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

14 G. Benattar et al.

Table 3. Summary of the results for SNNI-CP and SNNI-CSP.

A finite automaton

A\!h Non-det. A\!h det.

SNNI-CP PSPACE-C (Theorem 5.4) PTIME (Corollary 5.5)
SNNI-CSP EXPTIME (Theorem 5.22) PSPACE-C (Theorem 5.21)

A timed automaton

A\!h Non-det. A\!h Det.

SNNI-CP Undecidable (Theorem 5.2) EXPTIME-C (Theorem 5.19)
SNNI-CSP Undecidable (Theorem 5.2) EXPTIME-C (Theorem 5.19)

for each run a set of events of ! that can be enabled:
D(q0

h→ q ′
0

w→ q ′
0) = X with w ∈ !∗ and X ⊆ !l . As B

is deterministic, D needs only the knowledge of w and we
can write D(hw) ignoring the states of A′. For B, we can
even write D(w) instead of D(hw). Define the equivalence
relation ≡ on !∗ by: w ≡ w′ if D(w) = D(w′). Denote the
class of a word w by [w]. Because D is memory bounded,
!∗

/≡ is of finite index which is exactly the memory needed
by D.

Thus, we can define an automaton D/≡ =
(M,m0,!,→) by: M = {[w] | w ∈ !∗}, m0 = [ε],
and [w]

a→ [wa] for a ∈ D(hw). D/≡ is an automaton
which accepts L(A) (and it is isomorphic to D(B)) and
the size of which is the size of D because B has only
one state. This automaton is deterministic and thus D/≡
is also deterministic and accepts L(A). There is a family
(Ai)i≥0 of non-deterministic finite automata, such that the
deterministic and language-equivalent automaton of each
Ai requires at least exponential size. For each of these
Ai , we construct the controller Di

/≡ as described before,
and this controller must have at least an exponential size
(with respect to to Ai). This proves the EXPTIME lower
bound. !

In this section, we have studied the strong non-
deterministic non-interference control problem (SNNI-CP)
and control synthesis problem (SNNI-CSP) in the timed
setting. The main results we have obtained are (1) the SNNI-
CP can be solved if A\!h can be determinised and is un-
decidable; otherwise, (2) the SNNI-CSP can be solved by
solving a finite sequence of safety games if A\!h can be
determinised. We have provided an optimal algorithm to
solve the SNNI-CP and SNNI-CSP in this case (although
we have not proved a completeness result).

The summary of the results is given in Table 3.

5.4 SNNI-CP versus control with partial
observability

While the SNNI-VP is easily reducible to a classical lan-
guage inclusion problem, the situation is more subtle for
the control problem: in this section, we emphasise the dis-

tinction between classical control with partial observability
and SNNI control. First, recall that the SNNI controllability
property is as follows:

Is there a controller C s.t. L(C(A)/!h) ⊆ L(C(A) \ !h)?

In contrast, in our setting, the corresponding property of
controllability with partial observability (CPO) would be,
for a set of unobservable (and uncontrollable) events !no

and a specification given as an automaton B:

Is there a controller C s.t. L(C(A)/!no) ⊆ L(B)?

We see that for the SNNI property, the controller is also
modifying the target language, which is not trivial to ac-
count for in the setting of CPO.

Now, even if we can find a clever polynomial encoding
of the SNNI-CP and SNNI-CSP into the framework
of CPO, this would be interesting mostly for the finite
automaton case. In this case, partial observability basically
reduces to full observability (Kupferman & Vardi, 1997;
Lamouchi & Thistle, 2000; Lin & Wonham, 1988), with the
same EXPTIME complexity we obtain for the SNNI-CSP
(recall that the SNNI-CP reduces to the simpler SNNI-VP
for finite automata).

For TA, we have proved that the SNNI-CP and SNNI-
CSP problems are undecidable in the general case. And so
are the corresponding CPO problems (D’Souza & Mad-
husudan, 2002). If we restrict to the class dTA that we have
exhibited, however, we have proved that these SNNI control
problems are EXPTIME-complete. If we consider the most
favourable case, in which we could polynomially encode
the SNNI control problems for dTA in the framework of
CPO with a deterministic target language, the complexity
of the resulting algorithm would be 2EXPTIME as the CPO
problem with fixed resources and a deterministic external
specification is 2EXPTIME-complete (Bouyer et al., 2003).
Our custom algorithm would, therefore, be a very important
improvement compared to this hypothetical approach.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 15

q0 q1 q2

q3

q4 q5 q6

q7

VisitA→B
x := 0

x ≥ 3
LoadLogoB→C

AppletB→A
y := 0

y ≥ 3
LoadLogoA→C

VisitA→B
x := 0

x ≥ 3
LoadLogoB→C AppletB→A

y := 0

y ≥ 1
LoadLogoA→C

VisitA→C VisitA→C VisitA→C

[x ≤ 5]

[y ≤ 5]

[x ≤ 5]

[y ≤ 4]

Figure 12. The automaton W modelling the web privacy problem.

5.5 Application to timing attacks on web privacy

We illustrate the SNNI-CP for the class of timing attacks
described in Felten and Schneider (2000), Bortz and Boneh
(2007), and Kotcher et al. (2013), which can compromise
the privacy of the Web browsing histories of users. The
attacks allow a malicious website to determine whether
or not the user has recently visited some other unrelated
webpage. For example, an insurance company site could
determine whether the user has recently visited websites
relating to a particular medical condition; or an employer’s
website could determine whether an employee visiting it has
recently visited the sites of various political organisations.

We use the simple example proposed in Felten and
Schneider (2000) in which a malicious page can determine
this information by measuring the time the user’s browser
requires to perform certain operations. Suppose that Al-
ice is surfing on the Web, and she visits Bob’s website.
Bob wants to find out whether Alice has visited Charlie’s
website. First, Bob looks at Charlie’s site, and picks a file
that any visitor to the site will have seen. Bob picks the
file logo.jpg containing Charlie’s corporate logo. Bob
is going to determine whether the logo file is in Alice’s
webbrowser cache. If the file is in her cache, then she must
have visited Charlie’s website recently. Bob writes a Java
applet that implements his attack, and embeds it in his home
page. When Alice views the attack page, the Java applet is
automatically downloaded and run in Alice’s browser. The

applet measures the time required to access logo.jpg on
Alice’s machine, and reports this time back to Bob. Accord-
ing to this time, Bob may conclude that Alice has been to
Charlie’s site recently.

Figure 12 gives the timed automaton W modelling
this example with high-level action !h = {VisitA→C}
and all other actions are low-level actions (i.e. in !l).
Notice that W is not SNNI since the timed word ρ =
. . . (δ,AppletB→A)(1,LoadLogoA→C) . . . , for any de-
lay δ ≥ 0, is in L(W/!h) and not in L(W\!h).

Assume !c = {LoadLogoA→C}. As we have seen be-
fore, we can compute K2, a copy of W\!h completed with
a Bad location. Then, we build the product W ×!l

K2, syn-
chronised on !l , of W and K2. Both K2 and W are too big
for us to depict here while maintaining clarity, so we give
in Figure 13 only the crucial part of this product where the
interference may occur. The dotted arrows denote parts of
the product that have been abstracted away.

We can see that, as expected, an interference may occur
if the logo is loaded faster than three time units, which cor-
responds to the transition from (q7, q3) to Bad in Figure 13.
Then, LoadLogoA→C being the only controllable action,
the solution to the safety control problem we obtain con-
sists of cutting that transition to Bad , which corresponds
to adding a guard y ≥ 3 in the transition from q7 to q4. It
is easy to verify that the TA with this added constraint is
SNNI.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

16 G. Benattar et al.

(q0, q0) (q2, q2)

(q3, q3)

(q6, q2)

(q7, q3)(q4, q0) Bad

[y ≤ 5]

[y ≤ 4]

AppletB→A
y := 0

LoadLogoA→C
3 ≤ y

VisitA→C

AppletB→A
y := 0

LoadLogoA→C
3 ≤ y

LoadLogoA→C
1 ≤ y < 3

Figure 13. A part of W ×!l
K2 for the web privacy problem.

6. BSNNI and CSNNI control problems

In this section, we will show that for more restrictive non-
interference properties (CSNNI and BSNNI), the control
problem presents a major drawback: in the general case,
there is no most permissive controller.

The CSNNI-CP (resp. BSNNI-CP) we are interested in
is the following:

Is there a controller C s.t . C (A) is CSNNI
(resp.BSNNI)? (CSNNI-CP, BSNNI-CP)

The CSNNI-CSP (resp. BSNNI-CSP) asks to compute
a witness when the answer to the CSNNI-CP (resp. BSNNI-
CSP) is ‘yes’.

6.1 CSNNI-CP and CSNNI-CSP

Theorem 6.1: For finite automata, the CSNNI-CP is in
PTIME.
Proof: Let A be a finite automaton, and we show that there
exists a controller C such that C(A) is CSNNI iff A\!c is
CSNNI.

The if direction is obvious: the controller C∀ that pre-
vents any controllable action from occurring is defined by
C∀(ρ) = ∅, ∀ρ ∈ Runs(A). It is easy to see that C∀(A) is
isomorphic to A\!c and thus bisimilar.

This only if direction is proved as follows: let A1 and A2

be two finite automata over alphabet !ε such that A1 weakly

simulates A2. Consider A′
1 = A1\{e} and A′

2 = A2\{e} for
e ∈ !. Clearly, A′

1 simulates A′
2 (by definition of the simu-

lation relation).
Therefore, if there exists C s.t. C(A) is CSNNI, then so

is C(A)\!′ for any !′ ⊆ !. It follows that C(A)\!c must
be CSNNI.

The CSNNI-CP reduces to the CSNNI-VP which is
PTIME for finite automata. !
Theorem 6.2: For the class of deterministic finite au-
tomata, the CSNNI-CSP is PSPACE-complete.

Proof: By Lemma 3.11, for deterministic automata, SNNI
is equivalent to CSNNI. Hence the CSNNI-CSP is equiva-
lent to the SNNI-CSP which is PSPACE-complete by The-
orem 5.21. !

In the timed setting, the previous reduction to a ver-
ification problem cannot be applied as illustrated by the
following example.

Example 6.6: Let A be the deterministic timed automa-
ton given in Figure 14 (a) with !l = {ℓ1, ℓ2}, !h = {h}
and !c = {ℓ1}. A\!c is neither CSNNI nor SNNI (here
SNNI and CSNNI are equivalent since A is determinis-
tic). However, there exists a controller C such that C(A) is
both CSNNI and SNNI. C(A) can be given by the timed
automaton given in Figure 14(b).

However, for the timed automata in dTA, thanks to
Lemma 3.11 and Theorems 5.19 and 5.21, we have the
following:

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 17

q0

q1

q2

q3

1, x > 1

h, x > 4

2

(a) The automaton A

q0

q1

[x ≤ 4]

1, x > 1

(b) The automaton
C(A)

Figure 14. Counterexample of theorem 6.1 in timed setting.

Theorem 6.4: For timed automata in dTA, the CSNNI-CP
and CSNNI-CSP are EXPTIME-complete.

Proof: By Lemma 3.11, the CSNNI-CP/CSNNI-CSP is
equivalent to the SNNI-CP/SNNI-CSP for dTA, and by
Theorem 5.19, it follows that CSNNI-CP and CSNNI-CSP
are EXPTIME-complete. !

Moreover, for dTA, thanks to the algorithm of Section 5,
there always exists a most permissive controller for CSNNI.
However, we will now show that there is a non-deterministic
finite automaton s.t. there is no most permissive controller
ensuring CSNNI.

Proposition 6.5: There is no most permissive controller
ensuring CSNNI for the finite automaton A ̸∈ dTA of Fig-
ure 5(a) (i.e. such that A\!h is non-deterministic) with
!h = {h}, !l = {ℓ1, ℓ2, ℓ3} and !c = {ℓ2, ℓ3}.

Proof: Let Ac be the finite automaton of Figure 5(a) with
!h = {h}, !l = {ℓ1, ℓ2, ℓ3} and !c = {ℓ2, ℓ3}. Ac ̸∈ dTA
since Ac\!h is non-deterministic. This automaton is not
CSNNI. The controllers C1 and C2 of Figure 15 make
the system CSNNI. However, (C1 ∪ C2)(Ac) = Ac is not
CSNNI and, by construction is the only possible controller
more permissive than C1 and C2. Therefore, there is no
most permissive controller ensuring CSNNI for Ac with
!c. !

q0

q1

q2 q3

q4

h1 h2

Figure 16. The automaton Ai .

q0

q1

(a) Automa-
ton C1(Ae)

q0 q2
h

(b) Automaton C2(Ae)

Figure 17. Automata C1(Ae) and C2(Ae).

6.2 BSNNI-CP and BSNNI-CSP

We first show by Example 6.6 that even if there exists
a controller for a finite automaton A and a controllable
alphabet !c ensuring BSNNI (i.e. the answer to BSNNI-
CP is true), it is possible to have A\!c not BSNNI.

Example 6.7: Let Ai be the finite automaton of Figure 16
with !h = {h1, h2} et !l = {ℓ}. This automaton is BSNNI,
then the answer to BSNNI-CP is true for all !c. However,
for !c = {h2}, the automaton Ai\!c = Ae is not BSNNI.

We will now prove that for deterministic finite automa-
ton there is not always a most permissive controller that
enforces BSNNI. This result is in contrast with CSNNI
where a most permissive controller always exists for dTA.

Proposition 6.7: There is no most permissive controller
ensuring BSNNI for the deterministic finite automaton of
Figure 6(a) with !h = {h}, !l = {ℓ} and !c = {ℓ, h}.

q0

q1 q2

q3 q4

q5

q6

q7

1

1

2 3

h

1

2

(a) Automaton C1(Ac)

q0

q1 q2

q3 q4

q5

q6

q8

1

1

2 3

h

1

3

(b) Automaton C2(Ac)

Figure 15. Automata C1(Ac) and C2(Ac).

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

18 G. Benattar et al.

Table 4. Summary of the results for CSNNI and BSNNI control problems.

A Finite automaton

A\!h Non-det. A\!h Det.

CSNNI-CP PTIME (Theorem 6.1) PTIME (Theorem 6.1)
CSNNI-CSP NMPC∗ (Proposition 6.5) PSPACE-C (Theorem 6.2)
BSNNI-CSP NMPC∗ (Proposition 6.7) NMPC∗ (Proposition 6.7)

A Timed automaton

A\!h Non-det. A\!h Det.

CSNNI-CP Open EXPTIME-C (Theorem 6.4)
CSNNI-CSP NMPC∗ (Proposition 6.5) EXPTIME-C (Theorem 6.4)
BSNNI-CSP NMPC∗ (Proposition 6.7) NMPC∗ (Proposition 6.7)

*NMPC means that there not always exists a most permissive controller.

Proof: Let Ae be the deterministic finite automaton of Fig-
ure 6(a) with !h = {h}, !l = {ℓ} and !c = {ℓ, h}. This
automaton is not BSNNI. The controllers C1 and C2 of Fig-
ure 17 make the system BSNNI. However, (C1 ∪ C2)(Ae) =
Ae is not BSNNI and, by construction is the only possi-
ble controller more permissive than C1 and C2. Therefore,
there is no most permissive controller ensuring BSNNI for
Ae with !c. !

The summary of the results for CSNNI and BSNNI
control problems is given in Table 4.

7. Conclusion and future work

In this paper, we have studied the SNNI-CP and SNNI-CSP
in the timed setting. The main results we have obtained
are (1) the SNNI-CP can be solved if A\!h can be deter-
minised and is undecidable; otherwise, (2) the SNNI-CSP
can be solved by solving a finite sequence of safety games
if A\!h can be determinised; (3) there is not always a least
restrictive (most permissive) controller for (bi)simulation-
based non-interference even for untimed finite automata.
However, there is a most permissive controller for CSNNI
if A\!h is deterministic and CSNNI-CP and CSNNI-CSP
are EXPTIME-complete in this case in the timed setting.

The summary of the results is given in Tables 1 and
2 for the verification problems and Tables 3 and 4 for the
control problems.

Our future work will first focus on the extension of these
results to the more sophisticated notion of INI of Rushby
(1992) for timed systems.

We will also investigate the CSNNI-CP (and BSNNI-
CP) as even when there is no most permissive controller; it
is interesting to find one. Finally, another future direction
will consist of determining conditions under which a least
restrictive controller exists for the BSNNI-CSP.

Notes
1. For i = 0, this is the amount of time since the system started.

2. We assume that Q1 ∩ Q2 = ∅ and X1 ∩ X2 = ∅.
3. Recall that A2 is deterministic.

References
Alur, R., & Dill, D. (1994). A theory of timed automata. Theoret-

ical Computer Science, 126, 183–235.
Barbuti, R., & Tesei, L. (2003). A decidable notion of timed non-

interference. Fundamenta Informaticae, 54, 137–150.
Barthe, G., Pichardie, D., & Rezk, T. (2007). A certified

lightweight non-interference java bytecode verifier. In R. De
Nicola (Ed.), Proceedings of the 16th European conference
on Programming (ESOP’07) (pp. 125–140). Braga: Springer-
Verlag.

Benattar, G., Cassez, F., Lime, D., & Roux, O.H. (2009, Septem-
ber). Synthesis of non-interferent timed systems. In J. Ouak-
nine & F.W. Vaandrager (Eds.), Proceedings of the 7th In-
ternational Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS’09), Lecture Notes in Computer
Science (Vol. 5813, pp. 28–42). Budapest: Springer.

Bortz, A., & Boneh, D. (2007). Exposing private information by
timing web applications. In P. Patel-Schneider & P. Shenoy
(Eds.), Proceedings of the 16th International Conference on
World Wide Web (WWW ’07) (pp. 621–628). Banff, Alberta,
Canada: ACM.

Bossi, A., Piazza, C., & Rossi, S. (2007). Compositional informa-
tion flow security for concurrent programs. Journal of Com-
puter Security, 15, 373–416.

Bouyer, P., D’Souza, D., Madhusudan, P., & Petit, A. (2003,
July). Timed control with partial observability. In W.H. Jr
& F. Somenzi (Eds.), Proceedings of the 15th International
Conference on Computer Aided Verification (CAV’03), Lec-
ture Notes in Computer Science (Vol. 2725, pp. 180–192).
Boulder, CO: Springer.

Cassez, F. (2009, June). The dark side of timed opacity. In J.
H. Park, H.-H. Chen, M. Atiquzzaman, C. Lee, T, Kim, &
S.-S. Yeo (Eds.), Proceedings of the 3rd International Con-
ference on Information Security and Assurance (ISA’09), Lec-
ture Notes in Computer Science (Vol. 5576, pp. 21–30). Seoul:
Springer.

Cassez, F., Dubreil, J., & Marchand, H. (2009, October). Dynamic
observers for the synthesis of opaque systems. In Z. Liu &
A.P. Ravn (Eds.), 7th International Symposium on Automated
Technology for Verification and Analysis (ATVA’09), Lecture
Notes in Computer Science (Vol. 5799, pp. 352–367). Macao,
China: Springer.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

International Journal of Control 19

Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of
opaque systems with static and dynamic masks. Formal Meth-
ods in System Design, 40, 88–115.

Cassez, F., Mullins, J., & Roux, O.H. (2007). Synthesis of non-
interferent systems. In V. Gorodetsky, I. Kotenko, & V. Sko-
rmin (Eds.), 4th International Conference on Mathematical
Methods, Models and Architectures for Computer Network Se-
curity (MMM-ACNS’07), Communications in Computer and
Information Science (Vol. 1, pp. 307–321). St. Petersburg,
Russia: Springer.

C̆erāns, K. (1992). Decidability of bisimulation equivalence for
parallel timer processes. In G. von Bochmann & D.K. Probst
(Eds.), Proceedings of the Fourth Workshop on Computer-
Aided Verification (CAV’92), Lecture Notes in Computer Sci-
ence (pp. 302–315). Montreal, Canada: Springer-Verlag.

D’Souza, D., & Madhusudan, P. (2002). Timed control synthesis
for external specifications. In H. Alt & A. Ferreira (Eds.),
19th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’02), Lecture Notes in Computer Science (Vol.
2285, pp. 571–582). Antibes-Juan les Pins, France: Springer.

D’Souza, D., Raghavendra, K.R., & Sprick, B. (2005). An au-
tomata based approach for verifying information flow proper-
ties. Electronic Notes in Theoretical Computer Science, 135,
39–58.

Felten, E.W., & Schneider, M.A. (2000). Timing attacks on Web
privacy. In P. Samarati (Ed.), CCS ’00: Proceedings of the 7th
ACM Conference on Computer and Communications Security,
Athens (pp. 25–32). New York, NY: ACM Press.

Finkel, O. (2005). On decision problems for timed automata. Bul-
letin of the European Association for Theoretical Computer
Science, 87, 185–190.

Focardi, R., Ghelli, A., & Gorrieri, R. (1997, September). Using
non-interference for the analysis of security protocols. In H.
Orman & C. Meadows (Eds.), Proceedings of DIMACS Work-
shop on Design and Formal Verification of Security Protocols.
Piscataway, NJ: Rutgers University.

Focardi, R., & Gorrieri, R. (1997). The compositional security
checker: A tool for the verification of information flow secu-
rity properties. IEEE Transactions on Software Engineering,
23, 550–571.

Focardi, R., & Gorrieri, R. (2001). Classification of security prop-
erties (Part I: Information flow). In R. Focardi & R. Gor-
rieri (Eds.), Foundations of Security Analysis and Design
I: FOSAD 2000 Tutorial Lectures, Lecture Notes in Com-
puter Science (Vol. 2171, pp. 331–396). Heidelberg: Springer-
Verlag.

Gardey, G., Mullins, J., & Roux, O.H. (2005, August). Non-
interference control synthesis for security timed automata.
In M. Backes & A. Scedrov (Eds.), 3rd International Work-
shop on Security Issues in Concurrency (SecCo’05), Elec-
tronic Notes in Theoretical Computer Science (pp. 33–53).
San Francisco, CA: Elsevier.

Hadj-Alouane, N.B., Lafrance, S., Lin, F., Mullins, J., & Yeddes,
M. (2005a). Characterizing intransitive noninterference for 3-
domain security policies with observability. IEEE Transaction
on Automatic Control, 50, 948–958.

Hadj-Alouane, N.B., Lafrance, S., Lin, F., Mullins, J., & Yeddes,
M. (2005b). On the verification of intransitive noninterference
in multilevel security. IEEE Transactions on Systems, Man
and Cybernetics, 35, 948–958.

Henzinger, T., & Kopke, P. (1997). Discrete-time control for
rectangular hybrid automata. In P. Degano, R. Gorrieri, &
A. Marchetti-Spaccamela (Eds.), International Colloquium
on Automata, Languages and Programming (ICALP’97) (pp.
582–593). Bologna, Italy: Santa Barabara.

Kammuller, F. (2008). Formalizing non-interference for a simple
bytecode language in Coq. Formal Aspects of Computing, 20,
259–275.

Kocher, P.C. (1996). Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In N. Koblitz (Ed.),
International Cryptology Conference (CRYPTO’96) (pp. 104–
113). Santa Barabara, CA: Springer-Verlag.

Kotcher, R., Pei, Y., Jumde, P., & Jackson, C. (2013). Cross-origin
pixel stealing: timing attacks using CSS filters. In V. Gligor
& M. Yung (Eds.), Proceedings of the 2013 ACM SIGSAC
conference on computer and communications security (pp.
1055–1062). Berlin: ACM.

Krohn, M., & Tromer, E. (2009). Noninterference for a practical
DIFC-based operating system. In A. Myers & D. Evans (Eds.),
Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy (pp. 61–76). Washington, DC: IEEE Computer
Society.

Kupferman, O., & Vardi, M. (1997). Synthesis with incom-
plete information. In H. Barringer, M. Fisher, D. Gabbay &
G. Gough (Eds.), Proceedings of the 2nd International
Conference on Temporal Logic (ICTL’97) (pp. 91–106).
Manchester, UK: Kluwer.

Lamouchi, H., & Thistle, J. (2000). Effective control synthe-
sis for DES under partial observations. In IEEE Confer-
ence on Decision and Control (pp. 22–28). Sydney, Australia:
IEEE.

Laroussinie, F., & Schnoebelen, P. (2000). The state-explosion
problem from trace to bisimulation equivalence. In J. Tiuryn
(Ed.), Foundations of Software Science and Computation
Structures (FoSSaCS 2000), Lecture Notes in Computer Sci-
ence (Vol. 1784, pp. 192–207). Berlin, Germany: Springer-
Verlag.

Lin, F., & Wonham, W. (1988). On observability of discrete-event
systems. Information Sciences, 44, 173–198.

Lin, F., & Wonham, W. (1995). Supervisory control of timed
discrete-event systems under partial observation. IEEE Trans-
actions on Automatic Control, 40, 558–562.

Maler, O., Pnueli, A., & Sifakis, J. (1995). On the synthesis of dis-
crete controllers for timed systems. In E.W. Mayr, & C. Puech
(Eds.), Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS ’95) (pp. 229–242). Munich, Germany:
Springer.

Mazaré, L. (2004). Using unification for opacity properties. In
Workshop on Issues in the Theory of Security (WITS’04) (pp.
165–176). Barcelona, Spain.

Moez, Y., Lin, F., & Ben Hadj-Alouane, N. (2009). Modify-
ing security policies for the satisfaction of intransitive non-
interference. IEEE Transactions on Automatic Control, 54,
1961–1966.

R. Focardi, R.G., & Martinelli, F. (2003). Real-time information
flow analysis. IEEE Journal on Selected Areas in Communi-
cations, 21, 20–35.

Rushby, J. (1992). Noninterference, transitivity and channel-
control security policies (Technical Report CSL-92-02).
Menlo Park, CA: SRI International.

Sabelfeld, A., & Myers, A. (2003). Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21, 1–15.

Saboori, A., & Hadjicostis, C. (2008). Opacity-enforcing supervi-
sory strategies for secure discrete event systems. In the 47th
IEEE Conference on Decision and Control (pp. 889–894).
Cancun, Mexico: IEEE.

Stockmeyer, L.J., & Meyer, A.R. (1973). Word problems requir-
ing exponential time: Preliminary report. In A.V. Aho, A.B.
Borodin, R.L Constable, R.W. Floyd, M.A. Harrison, R.M.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

20 G. Benattar et al.

Karp, & H.R. Strong (Eds.), ACM Symposium on Theory of
Computing (STOC’73) (pp. 1–9). San Diego, CA: ACM.

Tasiran, S., Alur, R., Kurshan, R.P., & Brayton, R.K. (1996). Ver-
ifying abstractions of timed systems. In U. Montanari & V.
Sassone (Eds.), Conference on Concurrency Theory (CON-
CUR’96), Lecture Notes in Computer Science (Vol. 1119, pp.
546–562). Pisa, Italy: Springer.

van der Meyden, R., & Zhang, C. (2006). Algorithmic ver-
ification of noninterference properties. In M. Beek & F.
Gadducci (Eds.), Proceedings of the Second International
Workshop on Views on Designing Complex Architectures
(VODCA 2006), Electronic Notes in Theoretical Computer
Science (Vol. 168, pp. 61–75). Amsterdam, The Netherlands:
Elsevier.

D
ow

nl
oa

de
d

by
 [F

ra
nc

k
C

as
se

z]
 a

t 1
7:

26
 0

3
Se

pt
em

be
r 2

01
4

