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ABSTRACT
In this paper, we study energy and mean-payoff timed games.
The decision problems that consist in determining the exis-
tence of winning strategies in those games are undecidable,
and we thus provide semi-algorithms for solving these strat-
egy synthesis problems. We then identify a large class of
timed games for which our semi-algorithms terminate and
are thus complete. We also study in detail the relation be-
tween mean-payoff and energy timed games. Finally, we
provide a symbolic algorithm to solve energy timed games
and demonstrate its use on small examples using HyTech.

1. INTRODUCTION
Timed automata [1], respectively timed games [33, 19],

are fundamental models to verify, respectively to synthesize
controllers for, timed systems which have to enforce hard
real-time constraints. Those models were introduced in the
nineties and the underlying theory has since then been suc-
cessfully implemented in efficient analysis tools such as Kro-
nos [15] and UppAal [32] for verification, and UppAal-
Tiga [4] for synthesis. The latter has been used to solve
industrial case studies, e.g. [28, 20].

Recently, there has been an important research effort to
lift verification and synthesis techniques from the Boolean
case to the quantitative case, see [26] and references therein.
More specifically, lots of progress has been made recently
on zero-sum two-player games played on weighted graphs,
in which edges are decorated with costs or rewards, see for
example [13, 22, 23, 18], with the objective of setting up
a framework for the synthesis of optimal controllers (see
also [34] for applications in linear control systems). Impor-
tant examples of such games are mean-payoff and energy
games [13, 18, 23]. In those games, two players move a
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token along the edges of a weighted graph whose vertices
are partitioned into vertices that belong to player 1, and
player 2 respectively. In each round of the game, the player
that owns the vertex with the token chooses an outgoing
edge and target vertex to move the token to. By playing in
such a way, the two players form an infinite path through
the graph. Player 1 wins the mean-payoff objective if the
long-run average of the edge-weights along this path is non-
negative, and he wins the energy objective, if there exists a
bound c ∈ Z such that the running sum of weights of the
traversed edges along the infinite path never goes below c
(this can model for example that the system never runs out
of energy). As the games we consider are zero-sum, player 2
wins when he can enforce the complementary objectives. In
the finite state case, the mean-payoff and energy objectives
are inter-reducible, and this fact was used recently to provide
algorithmic improvements to solve mean-payoff games [18].

Extensions of timed automata with costs and rewards have
also been studied. In [3, 5], timed automata are extended
with continuous variables that are used as observers, and
allow for modeling accumulation of costs or rewards along
executions. The main motivation for studying those exten-
sions is to offer an extra modeling power while avoiding se-
vere intractability of richer models like hybrid automata.
Indeed, it has been shown that the reachability problem
for weighted/priced timed automata remains decidable [3,
5], and more precisely PSPACE-c [8], while the reachability
problem is undecidable already for the class of stopwatch
automata [21] (a simple class of hybrid automata). Also
the existence of executions in a weighted automaton that
ensure a bound on the mean-payoff can also be decided in
PSPACE [10]. In this paper, we consider timed extensions of
the important classes of mean-payoff and energy games.
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Figure 1: Turn-Based Energy Timed Game A.

Example 1. Fig. 1 gives an example of an energy (turn-
based) timed game. Eve (player 1) owns the left location and
decides when to take the transition from left to right, while
Adam (player 2) owns the right location and decides when
to take the transition from right to left; x is a dense-time
clock. Each transition resets the clock x, and when time
elapses the energy level grows with derivative 3 in Eve’s lo-
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Figure 2: Winning Zones for Timed Game A.

cation and decreases with derivative 2 in Adam’s location. In
the remaining of this paper, we use the following conven-
tions: plain (resp. dashed) arrows are Eve’s (resp. Adam’s)
transitions; a location invariant is enclosed in brackets (e.g.
[x ≤ 2]) and must be satisfied by the valuation of the clocks
when the control is in that location; when an edge weight
is non zero, we attach it to the edge. Fig. 2, left, depicts
the initial energy levels that are sufficient for Eve in order to
have a winning strategy against any strategy of Adam, i.e. to
ensure an infinite execution in which the energy level never
falls below 0. For instance, if the infinite game starts in
Eve’s location, then if the value of clock x is less than 2

3
, an

initial energy level 0 is sufficient; for x > 2
3
, the initial energy

level should be larger than or equal to 3 ⋅ x − 2. Similarly,
the winning zone in Adam’s location is depicted on the right
hand side of Fig. 2. The main purpose of this article is to
propose algorithmic methods to compute such information.

Unfortunately, for weighted extensions of timed games,
even the cost bounded reachability problem is undecidable [17],
and we show here that both mean-payoff and energy games
are undecidable. This is unfortunate as such cost extensions
of timed games are very natural and well-suited to model
optimality problems in embedded control [20]. Neverthe-
less, we believe that the undecidability result should not
be an end to the story and we study in this paper semi-
algorithms (completeness and/or termination is not guaran-
teed) to solve those two synthesis problems. We also iden-
tify a large class of timed games where our semi-algorithms
are complete. To the best of our knowledge, there are the
first positive results for those objectives on timed automata.
There are related works in the literature but they apply to
orthogonal classes of games, or to other objectives. Indeed,
in [9], it is shown that mean-payoff games are decidable for
O-minimal hybrid automata, this class is different from the
one identified here as timed automata are not O-minimal hy-
brid automata. In [30], the authors study the average time
per transition problem for turn-based timed games; their re-
sults do not apply to mean-payoff, nor to energy objectives.

Contributions. Our contribution is threefold. First, we
study the relation between mean-payoff and energy timed
games. As we already mentioned, in the finite state case, the
mean-payoff and energy objectives are inter-reducible [18]:
given a weighted game G, Eve wins the mean-payoff objec-

tive if, and only if, she wins the energy objective. We show
here that the relationship between the two types of games
is more complex in the timed case. We identify conditions
under which it is possible to transfer winning strategies for
one objective into winning strategies for the other objective,
and we show that those conditions are also necessary. Those
results are formalized by Thm. 1 and Thm. 2.

Second, Thm. 3 establishes the undecidability of the deci-
sion problems associated with energy and mean-payoff timed
games. This result is unfortunate but not surprising (it was
already conjectured in [7], see page 89). This negative result
motivates the main contribution of this paper: we propose
two semi-algorithms for synthesizing winning strategies. We
first consider a cycle forming game (in the spirit of [6]) on
the region graph associated with the underlying weighted
timed game: the two players move a token on the region
graph and the game is stopped as soon as a cycle is formed.
In Sect. 3.4, we partition the set of simple cycles of the re-
gion graph into those that are good for Eve, those that are
good for Adam, and those that are neither good for Eve nor
for Adam. If the formed cycle belongs to the first set then
Eve is declared winner of the cycle forming game, if the cy-
cle belongs to the second then Adam is the winner, otherwise
it is a draw. Thm. 4 establishes that if Eve wins the cy-
cle forming game then she has also a winning strategy in
associated energy games, and Thm. 5 proves a similar re-
sult for Adam. Then, we identify a class of weighted timed
games, that we call robust, for which this reduction to the
cycle forming game on the region graph is complete: in this
case the good cycles for Eve and the good cycles for Adam

partition the set of simple cycles of the region graph. This
class covers the class of timed games where costs appear
on edges only. Thm. 10 establishes the decidability of the
membership problem for the class of robust weighted timed
games.

Finally, as the cycle forming game is defined on the re-
gion graph, it does not lead to a practical algorithmic solu-
tion. This is why we propose in addition a symbolic semi-
algorithm to solve energy timed games. In Thm. 13, we show
that our symbolic algorithm is also complete on the class of
robust weighted timed games. In order to show the feasibil-
ity of our approach, we have implemented this algorithm as
a script for HyTech [27] and ran it on small examples.

Our main theorems and their relation with the different
classes of games we consider are depicted in Fig. 3 and 4.
Structure of the paper.

In Sect. 2, we define the mean-payoff and energy timed
games. In Sect. 3, we develop semi-algorithms based on
reductions to cycle games played on the region graph. In
Sect. 4, we identify a class robust games, for which the re-
duction to cycle games is complete. In Sect. 5, we propose
a symbolic semi-algorithm which is also complete for robust
games.

Due to space constraints, most proofs have been omitted
from this paper; they can be found in the full version [16].

2. PRELIMINARIES
In this section, we first recall the definition of concurrent

games. Then we review a useful result from [29] that defines
a canonical decomposition of infinite paths in a graph into
simple cycles. Next, we introduce weighted timed games, the
semantics of which is given in term of infinite concurrent
games. Starting from the notion of weight (or cost/reward),
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we define mean payoff and energy objectives. We close the
section with a study of the relationships that exist between
mean-payoff and energy objectives in timed games.

We let N be the set of natural numbers, Z the set of in-
tegers, R the set of reals and R+ the set of non-negative
reals.

2.1 Concurrent Games

Definition 1. ([2]) A concurrent game between two play-
ers Eve and Adam is a tuple C = ⟨St, ι,Act,Mov,Tab,Ω⟩, where:

● St is the set of states;

● ι ∈ St is the initial state;

● Act is the set of actions;

● Mov ∶ St × {Eve,Adam} ↦ 2Act ∖ {∅} gives for a state
and a player the set of allowed actions, we let Mov(s) =
{(a, b) ∣ a ∈ Mov(s,Eve), b ∈ Mov(s,Adam)};

● Tab ∶ St × Act × Act↦ St is the transition function;

● Ω ⊆ (St ⋅ (Act × Act))ω is the objective for Eve.

A concurrent game is finite if St and Act are finite. It is
turn-based if in each state s, one of the players has only one
allowed action.

A round of the game consists in Eve and Adam to choose in-
dependently and simultaneously some actions, say a∃ and a∀
respectively, such that a∃ ∈ Mov(s,Eve) and a∀ ∈ Mov(s,Adam).
The pair m = (a∃, a∀) is an allowed move i.e. m ∈ Mov(s).
By playing finitely (resp. infinitely) many rounds from state
s ∈ St, the players build a finite (resp. infinite) path. For-
mally, a path is a finite or infinite sequence s0 ⋅ m0 ⋅ s1 ⋅
m1⋯sk ⋅ mk⋯ of alternating states and moves, such that
∀i ≥ 0,mi ∈ Mov(si) and si+1 = Tab(si,mi). We also write a

path as s0
m0ÐÐ→ s1

m1ÐÐ→ ⋯. The length, ∣ρ∣, of an infinite path
ρ is ∞ and the length of a finite path ρ with n moves (end-
ing in sn) is n and last(ρ) = sn. We write ρn, n ≤ ∣ρ∣, for
sn, the n + 1-th state in ρ, and first(ρ) = ρ0 = s0. Given a

path ρ = s0
m0ÐÐ→ s1

m1ÐÐ→ ⋯, we write ρ≤n, n ≤ ∣ρ∣ for the prefix

of ρ up to sn that is the finite path s0
m0ÐÐ→ ⋯ mn−1ÐÐÐ→ sn.

A play is an infinite path in (St ⋅ (Act × Act))ω, and a
history is a finite path in (St ⋅ (Act × Act))∗ ⋅ St. The set of
plays from s is Play(C, s) and Play(C) = Play(C, ι). A play
is winning for Eve if it belongs to the objective Ω.

Definition 2. (Strategies) A strategy for Eve (resp. Adam)
is a function which associates with a history h an Eve-action
in Mov(last(h),Eve) (resp. an Adam-action). A pair of strate-
gies (σ∃, σ∀) forms a strategy profile. Given a strategy pro-
file, its outcome from state s, written Outs(σ∃, σ∀), is the
unique play ρ such that: ρ0 = s and ∀n ≥ 0, ρn+1 = Tab(ρn,
σ∃(ρ≤n), σ∀(ρ≤n)). Given a strategy σ∃ of Eve, its out-
comes from state s, written Outs(σ∃), are the set of plays ρ
for which there is a strategy σ∀ of Adam, such that ρ =
Outs(σ∃, σ∀). A strategy σ∃ of Eve is winning, if for all
strategies σ∀ of Adam, Outι(σ∃, σ∀) ∈ Ω; strategy σ∀ of Adam

is winning, if for all strategies σ∃ of Eve, Outι(σ∃, σ∀) /∈ Ω.

2.2 Decomposition in Simple Cycles
In the sequel we will reduce energy and mean payoff games

to games played on the region with cycles objectives. In
this paragraph we recall the key results [29] related to the
decomposition of a play into simple cycles. A history h =
s0 ⋅m0 ⋅s1 ⋅m1⋯sn is a cycle if s0 = sn, n ≥ 1. A simple cycle
is a cycle such that for all i and j, 0 ≤ i < j < n, si ≠ sj . We
write C(C) (C when C is clear from the context) for the set
of simple cycles in the concurrent game C.

Every history h of a finite game can be uniquely decom-
posed into a sequence of simple cycles, except for a finite
part. The decomposition process maintains a stack, st(h),
of distinct states and moves. We write the stack content
s1 ⋅m1 ⋅ s2 ⋅ ⋯ ⋅mn−1 ⋅ sn where s1 is at the bottom of the
stack and sn the top. We use the notation s ∈ st(h) for
s ∈ {s1, s2,⋯, sn}. The decomposition, dec(h), is a set of
simple cycles. We define dec(h) and st(h) inductively as
follows:

● for the single state history s, dec(s) = ∅ and st(s) = s.

● let h′ = h ⋅m ⋅ s, m a move, s ∈ St, be a history.

– If s ∈ st(h), and st(h) = α ⋅ s ⋅ β, then st(h′) =
pop(st(h), ∣β∣) and dec(h′) = dec(h)∪{s ⋅β ⋅m ⋅s}.

– else dec(h′) = dec(h), st(h′) = push(st(h),m⋅s).

Note that the stack always contains distinct elements, there-
fore only simple cycles are added to the decomposition. The
elements in the stack from the bottom to the top, form a
history s0 ⋅m0 ⋅ s1 ⋅m1 ⋯ sn, where n + 1 is the height of
the stack. The decomposition of a play is the union of the
decompositions of the finite prefixes of the play.

2.3 Weighted Timed Games
Let X be a finite set of variables called clocks. A clock

valuation is a mapping v ∶ X → R+. We let RX+ be the set
of clock valuations over X. We let 0X be the zero valuation
where all the clocks in X are set to 0 (we use 0 when X is
clear from the context). Given δ ∈ R+, v+δ denotes the valu-
ation defined by (v+δ)(x) = v(x)+δ. We let C(X) be the set
of convex constraints on X which is the set of conjunctions of
constraints of the form x&c with c ∈ N and & ∈ {≤,<,=,>,≥}.
Given a constraint g ∈ C(X) and a valuation v, we write
v ⊧ g if g is satisfied by v. Given Y ⊆ X and a valuation v,
[Y ← 0]v is the valuation defined by ([Y ← 0]v)(x) = v(x)
if x /∈ Y and ([Y ← 0]v)(x) = 0 otherwise.

Definition 3. A weighted timed game [31] (WTG for short)
is a tuple T = ⟨L, `ι,X, T∃, T∀,Inv,w⟩, where:

● L is the (finite) set of locations and `ι is the initial
location;



● X is a finite set of clocks;

● T∃, T∀ ⊆ L × C(X) × 2X × L are the set of transitions
belonging to Eve and Adam respectively, and we let T =
T∃∪T∀; An element of T∃ (resp. T∀) is an Eve-transition
(resp. Adam-transition).

● Inv∶L→ C(X) defines the invariants of each location;

● w∶L ∪ T → Z is a weight function assigning integer
weights to locations and discrete transitions.

If, from each location, all the outgoing transitions belong
to the same player, T is said turn-based.

Informally, a WTG is played as follows: a state of the
game is a pair (`, v) where ` is a location and v is a clock val-
uation such that v ⊧ Inv(`). The game starts from the initial
state (`ι,0). From a state (`, v), each player p ∈ {Eve,Adam}
chooses (independently) a timed action ap = (dp, ep) where
dp ∈ R+ and ep = (`, g, Y, `′) is a p-transition. The intended
meaning is that p wants to delay for dp time units and then
fire transition ep. There are some restrictions on the possible
choices of timed actions (dp, ep): 1) dp must be compatible
with the current state (`, v) and location invariant, i.e. for
all 0 ≤ d′ ≤ dp, v + d′ ⊧ Inv(`); 2) ep must be enabled af-
ter dp time units, i.e. v + dp ⊧ g; 3) the target location’s
invariant must be satisfied when entering this location, i.e.
[Y ← 0](v + dp) ⊧ Inv(`′).

A timed action satisfying these restrictions is said legal.
If from a given state, one player has no legal timed action
to play (i.e. no discrete action is enabled in the future for
this player), it plays a special action �. At each round of
the game, players propose some actions, a∃ for Eve, and a∀
for Adam. Either a∃ is a legal action for Eve; or there are
no legal actions for Eve and a∃ = �. Similarly for a∀. We
assume that from any reachable state of the game, at least
one player has a legal action, hence the pair (�,�) is never
proposed.

To determine the effect of a joint action, we select the
player p that chooses the shortest delay dp. In case both
players choose the same delay, the convention is that Adam is
selected (this is without loss of generality and other policies
can be accommodated for). These informal game rules are
formalized in the next section.

2.4 Semantics of Timed Games
Given a timed action (d, e) ∈ R+ × T with e = (`, g, Y, `′),

a state (`, v), the successor state in the WTG is (`′, v′) if:
1) ∀0 ≤ δ ≤ d, v + δ ⊧ Inv(`); 2) and v + δ ⊧ g; 3) and [Y ←
0](v + d) ⊧ Inv(`′). We denote this transition (`, v) (d,e)ÐÐÐÐ→
(`′, v′) which accounts for a combined delay transition of d
time units followed by the discrete step firing edge e. The

duration of this transition is d((`, v) (d,e)ÐÐÐÐ→ (`′, v′)) = d. Its

reward (or weight) is w((`, v) (d,e)ÐÐÐÐ→ (`′, v′)) = d ⋅w(`)+w(e).
Given an objective Ω ⊆ ((L ×RX+ ) ⋅ ((R+ × T∃) × (R+ × T∀)))

ω
,

the semantics of the WTG T is the (infinite) concurrent
game C(T ,Ω) = (St, ι,Act,Mov,Tab,Ω) defined by:

● the set of states is St = L ×RX+ and the initial state is
ι = (`ι,0);

● the set of actions is Act = Act∃ ∪ Act∀, where Act∃ =
R+ ×T∃ are the actions for Eve and Act∀ = R+ ×T∀ are
the actions for Adam;

● Mov(s,Eve) ∈ (2Act∃ ∖ {∅}) ∪ {�} is the set of legal ac-
tions for Eve in s if there is at least one, or {�} other-
wise; and Mov(s,Adam) is defined similarly.
Given (a∃, a∀) ∈ Mov(s,Eve) × Mov(s,Adam), we define
Mov(a∃, a∀) as follows:

– if a∃ = � (resp. a∀ = �) then Adam (resp. Eve) is
selected and Mov(a∃, a∀) = a∀ (resp. Mov(a∃, a∀) =
a∃);

– otherwise a∃ = (d∃, e∃) and a∀ = (d∀, e∀) and:
1. if d∃ < d∀, Mov(a∃, a∀) = a∃; 2. if d∀ ≤ d∃ then
Mov(a∃, a∀) = a∀;

● Given two actions a∃ and a∀, Tab((`, v), a∃, a∀) = (`′, v′)
if (`, v) Mov(a∃,a∀)ÐÐÐÐÐÐÐ→ (`′, v′).

Let h = s0
a∃1,a

∀

1ÐÐÐ→ s1 ⋯ sn−1
a∃n−1,a

∀

n−1ÐÐÐÐÐÐ→ sn⋯ be a finite or
infinite path in C(T ,Ω). The duration and reward of h are
respectively:

d(h) =
∣h∣−1

∑
k=0

d(sk
Mov(a∃k,a

∀

k)ÐÐÐÐÐÐ→ sk+1)

w(h) =
∣h∣−1

∑
k=0

w(sk
Mov(a∃k,a

∀

k)ÐÐÐÐÐÐ→ sk+1)

A play ρ is said non-Zeno if (d(ρ≤n))n∈N is unbounded.
A strategy σ is immune from Zenoness if all its outcomes
are non-Zeno. A game is said to have bounded transitions
if there is a bound D, such that for all states (`, v), actions

a∃, a∀: d((`, v) Mov(a∃,a∀)ÐÐÐÐÐÐ→ Tab((`, v), a∃, a∀)) ≤D.

2.5 Mean-payoff and Energy Objectives
The mean payoff (per time unit) of a play is defined as

the long-run average of reward per time unit. Formally, the
mean payoff of a play ρ is:

MP(ρ) = lim inf
n→∞

w(ρ≤n)
d(ρ≤n)

.

Definition 4. We consider the following types of games:

● The mean payoff game TMP associated with a WTG T ,
is the game played on T where the objective (for Eve)
is to obtain a non-negative mean payoff: i.e. TMP =
C(T ,ΩMP) where ΩMP = {ρ ∈ Play(C) ∣ MP(ρ) ≥ 0}.

● Given an initial credit c ≥ 0, the c-energy game TE(c)
associated to a WTG T , is the game played on T where
the objective Ω(c) is to maintain the reward of every
prefix of every play above −c: i.e. TE(c) = C(T ,Ω(c))
where Ω(c) = {ρ ∈ Play(C) ∣ ∀n ∈ N. c + w(ρ≤n) ≥ 0}.

● The energy game associated with a WTG T , is the
game C(T ,ΩE) where the objective is ΩE = ∪c≥0Ω(c).

Decision problems. For each type of games, we define
the associated decision problem:

● Mean-payoff : Given a mean payoff game TMP, is there
a winning strategy for Eve in TMP?

● c-energy : Given a c-energy game TE(c), is there a win-
ning strategy for Eve in TE(c)?
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● Energy : Given an energy game TE , is there a winning
strategy for Eve in TE?

We also consider the following related problem:

● Unknown initial credit : Given a WTG T , is there a
credit c such that Eve has a winning strategy in TE(c)?

We also consider these problems from Adam’s point of view.
To conclude this section we study the relations between

mean payoff and energy games and state that all decision
problems we have defined are undecidable for WTG.

2.6 Relations Between Mean-payoff and En-
ergy Objectives

Obviously, if for some c the c-energy game is won by Eve,
then the energy game is also won. In the other direction, if
Adam has a winning strategy for the energy game then it is
also winning for any c-energy game. In the finite state case
the problem of energy and unknown initial credit are equiv-
alent [18]: if Eve has a winning strategy for the energy game
she has a memoryless one, and there is a bound on the max-
imum energy consumed by the outcomes of that strategy.
This is not the case in general for WTG as demonstrated by
the WTG B of Fig. 5, for which Eve wins the mean-payoff
game and the energy game, but no c-energy game.

While energy and mean-payoff objectives are inter-reducible
in the finite state case [18], the relationships between the two
classes of objectives, formalized in the next two theorems, is
more subtle for weighted timed games.

Theorem 1. Let T be a WTG. If Eve has a winning
strategy σ∃ in the energy game TE and σ∃ is immune from
Zenoness, then σ∃ is a winning strategy in the mean payoff
game TMP.

Example 2. The following example shows that if we do
not have immunity from Zenoness, the property no longer
holds. In the game of Fig. 6, any play is winning for Eve

in the c-energy game if c > 1. However, the total delay of a
play is always smaller or equal to 1, hence the mean-payoff
is smaller than −1, which means that Eve is losing.

We let T +δ be the game T in which we increase the
weights of all locations by δ ∈ R. Formally T +δ is the WTG
⟨L, `ι,X, T∃, T∀,Inv,w+δ⟩, where: 1) w+δ(`) = w(`)+δ if ` ∈ L;
2) w+δ(t) = w(t) if t ∈ T .

Theorem 2. Let T be a WTG. If there exists δ > 0, such
that Adam has a winning strategy σ∀ in the energy game T +δE
which is immune from Zenoness, then σ∀ is a winning strat-
egy in the mean payoff game TMP.

Example 3. The following example shows that if we do
not add this δ to the weight of locations, the property no
longer holds. In the game of Fig. 7, for any initial credit c,
Adam wins the c-energy game TE(c). However Eve has a win-
ning strategy in the mean-payoff game TMP. She has to choose

a delay which increases fast enough so that the weight of the
play is small compared to its duration. For instance, if at
the n-th step of the game, she chooses to delay for n2 time
units, the average weight of the play will be greater than
− 1
n

. Hence it converges towards 0 and the mean-payoff is 0.
Notice that if we add a small positive δ to the weight of each
location, then following the same strategy, Eve also wins the
c-energy game TE(c) for c greater than 1

δ
.
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0
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Figure 7: A WTG T .
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As already announced in the introduction, all the decisions
problems that we have defined on weighted timed games
are undecidable. The following theorem can be established
(details are given in the full version of this paper) using
variants of techniques used in [17, 14]:

Theorem 3. The mean-payoff, c-energy, energy and un-
known initial credit problems are undecidable for WTG.

3. A SEMI-PROCEDURE USING REGIONS
In this section, starting from the classical notion of re-

gions [1], we define a finite concurrent game that exploits
the relationship between timed paths and their projections
in the region graph. We identify simple cycles in the region
graph that are good for Eve (they roughly correspond to frag-
ments of timed paths with positive reward), and others that
are good for Adam (they roughly correspond to fragments of
timed paths with negative reward). Thm. 4 tells us that if
Eve can force to visit only her good cycles in the region graph
then she has a winning strategy in the original energy timed
game, and Thm. 5 is a symmetric result for Adam. To for-
malize those results, we need the notion of quasi-path: when
we decompose a timed path according to simple cycles of the
region graph, we introduce jumps inside regions because we
remove a fragment of a timed path that starts inside a region
and ends up in a possibly different state of the same region.
Finally, we show how to solve the cycle forming game. This
reduction is not complete: there are games which have win-
ning strategies for Eve (or Adam) that our procedure will not
find. However, we identify in Section 4 a class of games for
which this reduction is complete.

3.1 Regions
We first recall the classical notion of regions [1]. If k ∈ N,

we write Ck(X) for the set of constraints in C(X) in which
constants are integers within the interval ⟦0;k⟧. Let T be
a WTG, and let M = max{c ∣ x ∼ c is a constraint in T }.
For δ ∈ R+, we write ⌊δ⌋ the integral part of δ and fr(δ) its
fractional part. The equivalence relation ≡X,M over RX+ ×RX+
by v ≡X,M v′ if, and only if: 1) for all clocks x ∈ X, either
⌊v(x)⌋ and ⌊v′(x)⌋ are the same, or both v(x) and v(x)
exceed M ; 2) for all clocks x, y ∈ X with v(x) ≤ M and
v(y) ≤ M , fr(v(x)) ≤ fr(v(y)) if, and only if, fr(v′(x)) ≤
fr(v′(y)); 3) for all clocks x ∈X with v(x) ≤M , fr(v(x)) = 0
if, and only if, fr(v′(x)) = 0;

This equivalence relation naturally induces a partition
RX,M of RX+ . We write [v]X,M ([v] when X and M are



fixed) for the equivalence class of v ∈ RX+ . An equivalence
class is called a region. It is well known that this partition
has the following properties: 1) it is compatible with the
constraints in CM(X), i.e. for every r ∈ RX,M , and con-
straint g ∈ CM(X) either all valuations in r satisfy the clock
constraint g, or no valuation in r satisfies it; 2) it is com-
patible with time elapsing, i.e. if there is v ∈ r and t ∈ R+
such that v + t ∈ r′, then for all v′ ∈ r there is t′ such that
v′ + t′ ∈ r′; 3) it is compatible with resets, i.e. if Y ⊆X then
if [Y ← 0]r ∩ r′ ≠ ∅ then [Y ← 0]r ⊆ r′.

A region r is said to be time-elapsing, if for any v ∈ r there
is t > 0 such that v + t ∈ r. We write Succ(r) the successors
of r by time elapsing, it is defined by r′ ∈ Succ(r) if there is
v ∈ r and t ≥ 0 such that v + t ∈ r′.

3.2 Region Game
Given an objective Ω ⊆ ((L ×RX,M) ⋅ Act)ω, the region

game associated with a WTG T = ⟨L, `0, X,T∃, T∀,Inv,w⟩
is the concurrent game R(T ,Ω) = ⟨St, ι,Act,Mov,Tab,Ω⟩
where:

● St = L ×RX,M and ι = (`ι,0) is the initial state;

● Act is the set of actions. They are either � or of the
form (r, e, a) where r ∈ RX,M , e ∈ T∃ ∪ T∀ is a transi-
tion, and a ∈ {head;tail}; intuitively, an action is a
target region (abstract delay) and a discrete transition.
The extra component in {head;tail} is needed to de-
termine who plays first when the two players choose
the same abstract delay (target region).

● Let s = (`, r). Action (r′, e, a) belongs to Mov(s,Eve)
(resp. Mov(s,Adam)), if: 1) ∃(`, g, Y, `′) ∈ T∃ (resp. T∀);
2) r′ ∈ Succ(r); 3) r′ ⊆ Inv(`); 4) r′ ∩ g ≠ ∅; 5) and
[Y ← 0]r′ ⊆ Inv(`′). If there are no such action then
only � is allowed and this is the only situation in which
� is allowed.

● Let s = (`, r) and (r∃, e∃, a∃) ∈ Mov(s,Eve), (r∀, e∀, a∀) ∈
Mov(s,Adam). s′ = Tab(s, (r∃, e∃, a∃), (r∀, e∀, a∀)) is de-
fined as follows:

– if r∃ ≠ r∀, one region is a strict (time abstract)
predecessor of the other (as they are both succes-
sors of r). If r∃ is a strict predecessor of r∀, Eve’s
action (r∃, e∃, a∃) is selected and otherwise Adam’s
action (r∀, e∀, a∀) is selected.

– otherwise r∃ = r∀ and two cases arise: 1. either r∃
is not a time-elapsing region: in this case Adam’s
move is selected; 2. or r∃ is a time-elapsing region;
which move is selected then depends on the extra
components a∃, a∀ ∈ {head;tail}: if a∃ = a∀ then
Eve’s move is selected and otherwise Adam’s move
is selected.

Once an action (r′, e, a) with e = (`, g, Y, `′) is selected,
the resulting state is s′ = (`′, r′′) with r′′ = [Y ← 0]r′.

Remark 1. In case T is turn-based, then in each state of
R(T ,Ω) only one player has a choice. The region game can
then be seen as a (classical) turn-based finite game.

Example 4. We want to reduce the problem of finding
winning strategies in a WTG to an equivalent problem in
the region game. To illustrate the need for the extra com-
ponent in the actions (i.e. a ∈ {head;tail}) consider the

example of Fig. 9. In the WTG (left), Eve has no winning
strategy to win the mean payoff game: Adam can always
choose a delay shorter than her from `0 to enforce location
`2. For the same reason Adam has also no winning strategy.
In the region game (right), we abstract away from the actual
delays Eve and Adam can propose: they have only one possi-
ble choice which is to propose to delay up-to region 0 < x < 1.
To reproduce the possibility that either Eve or Adam are able
to propose the smallest delay, we use the choices of both
players in {head,tail}.

`0,w = 0

[x < 1]

`1,w = 1

`2,w = −1

0 < x
< 1

0 < x < 1

`0, r0

`1, r1

`2, r1

head,head
tail,tail

head,tail
tail,head

Figure 9: A WTG T and its associated region game.

3.3 Quasi Paths
A quasi path in a WTG is a sequence of states and tran-

sitions ρ = (`0, v0)τ0(`1, v1)τ1⋯τn−1(`n, vn) such that for all

0 ≤ i ≤ n−1 either: 1) τi is a move (a∃, a∀) and (`i, vi)
Mov(a∃,a∀)ÐÐÐÐÐÐ→

(`i+1, vi+1); 2) or `i = `i+1 and [vi] = [vi+1]. In that case τi
is called a jump. We will denote jumps by ↷. A quasi cycle
is a quasi path such that (`n, [vn]) = (`0, [v0]).

In order to extend the reward to quasi paths, we need a
weight function δ ∶ L ×RX,M ↦ R which attributes a weight
to jumps according to the region in which they happen. We
define wδ the reward for each transition τi, depending on

its type: 1) if τi is a move (a∃, a∀) and (`i, vi)
Mov(a∃,a∀)ÐÐÐÐÐÐ→

(`i+1, vi+1), then wδ((`i, vi)τi(`i+1, vi+1)) = d ⋅ w(`i) + w(e)
where (d, e) = Mov(a∃, a∀); 2) otherwise τi =↷, then wδ((`i, vi)↷
(`i+1, vi+1)) = δ([`i, vi]). The reward for the quasi path ρ is
then wδ(ρ) = ∑i<∣ρ∣ wδ((`i, vi)τi(`i+1, vi+1)).

We define a projection from quasi paths to paths in the
region game by forgetting jumps and projecting each state
to its associated region. Formally, the projection π is defined
inductively: 1. π((`, v)) = (`, [v]); 2. π(h ↷ (`, v)) = π(h);
3. π (h ⋅ (`, v) a∃,a∀ÐÐÐ→ (`, v′)) = π(h ⋅ (`, v)) b∃,b∀ÐÐÐ→ (`′, [v′])
where ap = (dp, ep) for p ∈ {Eve,Adam}, b∃ = ([v+d∃], e∃,head),
and b∀ = ([v + d∀], e∀,head) if d∃ < d∀ and b∀ = ([v +
d∀], e∀,tail) otherwise. It is naturally extended from histo-
ries to plays: ρ′ is the projection of ρ if for all finite prefixes
h of ρ, π(h) is a prefix of ρ′. If h is a path in the region
game, the path ρ is said compatible with h if π(ρ) = h, and
we write γ(h) for the set of path compatible with h.

3.4 Reduction to the Region Game
Given a weight function δ ∶ L ×RX,M ↦ R, we will write

C+
δ for the set of simple cycles in the region game that only

correspond to quasi cycles rewarding more than δ if δ is



positive and more than 0 otherwise. Formally1:

C+
δ = {c ∈ C ∣ ∀ρ ∈ γ(c). wδ(ρ) ≥ max{δ(first(c)),0}}.

Given a real number ε > 0, we write C−ε
δ for the simple

cycles of the region game that correspond to quasi cycles
with weight lower than δ and lower than −ε. Formally2:

C−ε
δ = {c ∈ C ∣ ∀ρ ∈ γ(c). wδ(ρ) ≤ min{δ(first(c)),−ε}}.

The winning condition of the region game will be given by
cycle objectives. The intuition behind the definition of these
objectives, is that if Eve can force the play to see only cycles
with positive reward (i.e. in C+

δ ), the accumulated weight
will be positive, except for a finite part. Which means she
is winning the c-energy game, if c is big enough to cover the
loss of energy in this finite part.

In the region game, we will consider the cases where the
objective of Eve is given by Ω+

δ = {ρ ∣ dec(ρ) ⊆ C+
δ}. That

is, she wins for plays whose decomposition in simple cycles
only contains positive cycles.

Given a WTG T , let WT = mint∈T {w(t)} ∪ {0} and WL =
min`∈L{w(`)} ∪ {0}.

Theorem 4. Let T be a WTG, if Eve has a winning
strategy in R(T ,Ω+

δ ) then: 1) she has a winning strategy τ∃
in the energy game TE; 2) if T has bounded transitions, τ∃
is a winning strategy in the energy game TE(c) for the initial
credit c = ∣L×RX,M ∣ ⋅(WL ⋅D+WT ); 3) if τ∃ is immune from
Zenoness, then it is winning in the mean payoff game TMP.

Remark 2. We made the hypothesis that there exists a
bound on the duration of transitions in order to get the re-
sult for the unknown initial credit. Consider the example
of Fig. 5. In this game, Eve is winning in the region game
for Ω+

δ , and therefore by Thm. 4 she also wins in the en-
ergy game TE, by Thm. 1 she also wins the mean-payoff
game TMP if we consider a strategy that is immune from
Zenoness. However, the transition going out of `0 can be
taken by Adam at any moment, its duration is not bounded.
Indeed, whatever the initial credit is, Adam can force a play
which costs more than this credit, by delaying the transition
for long enough. Therefore Eve has no winning strategy for
any fixed initial credit and the answer to the unknown initial
credit problem is negative.

We now consider the objective for Eve: Ω−ε
δ = {ρ ∣ dec(ρ) /⊆

C−ε
δ }. That is, she wins if the decomposition in simple cycle

contains at least on simple cycle that is not below −ε.

Theorem 5. Let T be a WTG, if Adam has a winning
strategy in R(T ,Ω−ε

δ ) then 1) he has a winning strategy in
the energy game TE; 2) if T has bounded transitions, then
Adam has a winning strategy in the mean payoff game TMP.

3.5 Solving the Region Game
We now show how to solve a finite game with objective

of the form Ω = {ρ ∣ ∀c ∈ dec(ρ).c ∈ CW } or Ω = {ρ ∣ ∃c ∈
dec(ρ).c ∈ CW }. We can then apply this technique to solve

1Note, that this definition is inductive: as a jump in the
region (`, r) gives a reward of δ(`, r), we make sure that a
(quasi)-cycle on that region always provides a reward larger
than or equal to this value.
2Note, that the definition for the good cycles of Adam is sym-
metric but slightly stronger as we require that the weight of
(quasi)-cycles to be ε-bounded away from zero.

the region game. To do so we unravel the game, and stop
as soon as a cycle is formed. The play is then winning if
the cycle formed belong to CW . This technique is adapted
from [6].

Definition 5. Let G = ⟨St, ι,Act,Mov,Tab,Ω⟩ be a concur-
rent game with Ω = {ρ ∣ ∀c ∈ dec(ρ).c ∈ CW } or Ω = {ρ ∣ ∃c ∈
dec(ρ).c ∈ CW }. The unraveling of G, written U(G), is the
tuple ⟨St′, ι,Act,Mov′,Tab′,Ω′⟩:

● the set of states is St′ = {h ∈ (St ⋅ (Act × Act))∗ ⋅ St ∣
∀i, j ≠ i. hi ≠ hj} ∪ {↑, ↓}, the set of histories of the
original game where all states appear at most once;
with the addition of a winning state ↑ and a loosing
state ↓ for Eve;

● Mov′(h, p) = Mov(last(h), p);

● for an history h and a move (a∃, a∀), let s = Tab(last(h),
a∃, a∀): 1) if s does not appear in h then Tab′(h, a∃, a∀) =
h
a∃,a∀ÐÐÐ→ s; 2) otherwise, let i be such that hi = s, and

c = h≥i
a∃,a∀ÐÐÐ→ s (notice that such a i is unique): if c

belongs to CW then Tab′(h, a∃, a∀) =↑ and otherwise
Tab′(h, a∃, a∀) =↓. Then, from ↑ and ↓, there are only
self loops, thus Tab′(x, a∃, a∀) = x for x ∈ {↑, ↓}.

● the objective is to reach ↑, i.e. Ω′ = (St′ ⋅ (Act × Act))∗ ⋅
(↑ ⋅(Act × Act))ω.

Theorem 6. Let G be a concurrent game and U(G) its
unraveling. Then Eve has a winning strategy in the unraveled
game U(G) if, and only if, she has a winning strategy in G.

Theorem 7. Given a finite concurrent game G with ob-
jective Ω = {ρ ∣ ∀c ∈ dec(ρ).c ∈ CW } or Ω = {ρ ∣ ∃c ∈
dec(ρ).c ∈ CW } where CW is given by an automaton, de-
ciding if Eve has a winning strategy is PSPACE-complete.

4. ROBUST GAMES
The reduction to the cycle forming game in the region

graph is complete when there exists a weight function δ,
that partitions the set of simple cycles of the region into
good ones for Eve and good ones for Adam.

Definition 6. (Robust game) A WTG is said δ-robust if
C = C+

δ ∪ C−ε
δ for some ε. We simply call a WTG robust

when there exists δ ∶RX,M ↦ R such that it is δ-robust.

Remark 3. Note that a WTG G where all the costs are
discrete (i.e. ∀` ∈ L. w(`) = 0) is robust for δ = 0 and ε < 1.
The results of this section implies decidability of the energy
problem and mean payoff problem for this class.

Remark 4. If T is robust, then the leafs of U(R(T )) are
partitioned between winning for Eve and winning for Adam.
If, in addition, this game is turn-based, then it is determined.
By Thm. 4 and Thm. 9, we can conclude that if T is robust
and turn-based then the energy game TE is determined.

Now, we establish that in a robust WTG, we can decide if
Eve can win the energy game. This is a consequence of the
following theorem which complements Thm. 4. A symmetric
result also holds for Adam.



Theorem 8. Let T be a δ-robust WTG: 1) if Eve has
a winning strategy in the energy game TE then she has a
winning strategy in U(R(T ,Ω+

δ )); 2) if T has bounded tran-
sitions and Eve has a winning strategy in the mean payoff
game TMP then she has a winning strategy in U(R(T ,Ω+

δ )).

Theorem 9. Let T be a δ-robust WTG: 1) if Adam has a
winning strategy in the energy game TE, then he has a win-
ning strategy in U(R(T ,Ω−ε

δ )); 2) if T has bounded tran-
sitions and Adam has a winning strategy in the mean payoff
game TMP, then he has a winning strategy in U(R(T ,Ω−ε

δ )).

Given a weighted timed game, it is decidable whether this
game is robust or not. Additionally, we present several com-
plexity results about this problem in the full version of this
paper.

Theorem 10. The membership problem for the class of
robust game is decidable.

Finally, we can characterize the complexity of deciding the
energy problem for robust weighted timed games:

Theorem 11. The energy problem for robust games is in
EXPSPACE and is EXP-hard.

Proof Sketch. The algorithm proceeds by constructing
the region game and then solving it using the algorithm of
Thm. 7. This is correct because of Thm. 4, 6 and 8.

5. FIXPOINT ALGORITHM
While the reduction to the cycle forming game in the re-

gion graph is elegant and allows us to identify a large and
natural class of weighted timed games with decidable prop-
erties, this reduction does not lead directly to a practical
semi-algorithm. In this section, we design a valuation itera-
tion algorithm that can be implemented symbolically using
polyhedra, which can be executed on any weighted timed
game, and find winning strategies for Eve when it terminates
successfully. We also show that termination is guaranteed
on robust weighted timed games.

5.1 Value Iteration Algorithm
Our value iteration algorithm is an adaptation of the so-

lution for the finite state case described in [18] to the setting
of WTG. It computes successive approximations of the min-
imal energy level that Eve needs to win the energy game.

Essentially, the semi-algorithm is based on the iteration
of an operator that computes successive approximations of
the energy level/credit that is necessary for Eve to maintain
the energy level positive for k rounds in the energy timed
game, where k increases along with the iterations. Most
importantly, our algorithm is parameterized by a value c ∈ N,
that represents a maximal energy level that we want to track:
if the energy level necessary to stay alive from a given state
(l, v) for k rounds is larger than c then (`, v) is considered
as loosing. This is a sound approximation when looking for
winning strategies. This parameter is important to enforce
termination of the analysis. If a fixed point is reached, then
it contains enough information to identify winning states
(those that are not mapped to +∞ by the operator) and
construct winning strategies. If the analysis is negative (no
winning strategy found) then this value can be increased.
Furthermore, we show that for robust weighted timed games,

there is a finite value c which is computable and sufficient
to detect winning strategies for Eve.

In this section, we assume the WTG is fixed and tran-
sitions, weight functions, etc . . . refer to this game. Given
c ∈ N, we write a ⊖c b for max(0, a − b) if a − b ≤ c and
+∞ otherwise. In the sequel we consider mappings in
S = [St ↦ R+ ∪ {+∞}] that associate with each state an
element in R+ ∪ {+∞}.

Given c ∈ N, the operator liftc ∶ S ↦ S is defined by:

∀s ∈ St,liftc(f)(s) = inf
a∃

sup
a∀

{f(s′)⊖c w(s
a∃,a∀ÐÐÐ→ s′)}

We let fc0 ∶ St ↦ R+ ∪ {+∞} be the mapping defined by
∀s ∈ St, fc0(s) = 0. We then inductively define fck+1, for k ≥ 0
to be liftc(fck). Thus, fcn(s) represents the initial energy
level that is needed by Eve to keep the energy level positive
for n steps from s. If more than c is needed then fcn(s) is set
to be +∞ (c being the maximal energy level that we want
to track). This is formalized in Lem. 1.

Lemma 1. For all state s, index n, credit c, ε > 0:

fn(s) ≥ − sup
σ∃

inf
σ∀

{w/c(Outs(σ∃, σ∀)≤n)} .

where for a history h = h0
m0ÐÐ→ h1⋯

mnÐÐ→ hn, w/c(h) = −∞ if

∃i. w(hi
miÐ→ hi+1) < −c − ε and w(h) otherwise.

Theorem 12 (Correctness). If there exists n ≥ 0 such
that fn+1 = fn, and fcn(ι) ≠ +∞, then for any ε > 0, Eve has
a winning strategy for the c′-energy game TE(c′) with initial
credit c′ = fcn(ι) + ε.

In the case of robust game, we show that we can stop the
algorithm after a finite number of iterations.

Theorem 13 (Termination). Let T be a WTG and c
a fixed credit. If T is δ, ε-robust and fcn0

(`ι,0) ≠ +∞ for

n0 ≥ ( c⋅(∣L∣⋅∣RX,M ∣+1)
ε

+ 1) ⋅ ∣L∣ ⋅ ∣RX,M ∣ then Eve has a winning

strategy in the energy game.

If moreover the game has bounded transition, the algo-
rithm is complete.

Theorem 14 (Completeness for robust games).
Let T be a robust WTG, which has bounded transitions, and
c = ∣L×RX,M ∣ ⋅(WL×D+WT )+1. Eve has a winning strategy
in the energy game TE(c) if, and only if, fcn0

≠ +∞.

5.2 Symbolic Algorithm
We have implemented the previous value iteration algo-

rithm in HyTech [27]. The implementation is based on the
symbolic controllable timed predecessors operator defined
in [11] and first implemented in HyTech for cost optimal
reachability games [12]. The choice of HyTech compared to
state-of-the-art hybrid systems’ analyzers like PHAVer [24]
or SpaceEx [25] is motivated by the fact that HyTech has a
built-in script language in which we can define the symbolic
controllable predecessors operator easily. The symbolic al-
gorithm/program in HyTech for the example of Fig. 1 is
given in Appendix E. The result of the computation for the
value iteration algorithm with c = 4 is depicted on Fig. 2 and
show the winning zones for Eve in locations Eve and Adam.

The value iteration algorithm is implemented as the iter-
ative computation of the fixpoint of a safety hybrid game.



The hybrid game has a special variable E, the energy vari-
able which is the only variable that is not a clock. Each
location ` of the original WTG has a counterpart location
`H in the hybrid game. If w(`) = k ∈ Z then the deriva-
tive of E in `H is given by dE

dt
= k; each discrete transi-

tion (`, g, z, `′) of the WTG also has a counterpart transition
(`, g, z ∧E ∶= E + k, `′) if w(`, g, z, `′) = k.

A state of the hybrid game is thus defined by ((`, v),E)
where (`, v) is a state of the original WTG. The existence
of a winning strategy for the c-energy game T is reduced to
the existence of a winning strategy in the associated hybrid
game for the safety objective E ≥ 0 (in each location.) Let
Safe = {((`, v),E) ∣ 0 ≤ E ≤ c}, where the upper bound c is
the one used in the lift function from subsection 5.1. We
define the winning states of the safety hybrid game as the
greatest fixpoint of:

X = Safe ∩ Predt(Up(cPred(X)),uPred(X))

where cPred (controllable predecessor), uPred (uncontrol-
lable predecessor), Predt (temporal predecessor) are defined
as in [11, 12] and

Up(Y ) = {((`, v), e′) ∣ ∃((`, v), e) ∈ Y ∧ e′ ≥ e}.

The Up operator captures in our symbolic implementation
the role of the bound c in the liftc operator: indeed, while
the set Xi contains only triples ((`, v), e) where e ≤ c, it is
clear that we must include in Xi+1 triples ((`′, v′), e′) from
which Eve can force in one round the upward closure (for
the energy level) of safe states in i steps. This is because if
Eve can win from (`, v) with a given energy level then she
can win from that state with any greater energy level.

Example 5. In Fig. 10, plain (resp. dashed) arrows are
controllable (resp. uncontrollable) edges. In location `0, no
task is scheduled and the (battery) energy is recharging at
rate +3. There is a background task B to be run at least
every 2 t.u. if the other task has not arrived (and actually
running in location `1) and a sporadic task S (interrupt)
that can happen any time. The task B can be scheduled
from location `0 (this is controllable) and we can stop to
run it after at least 1 t.u. (measured by clock x.) The back-
ground task B has less priority than S and if S happens it is
scheduled and B preempted. If we schedule the background
task B, we are rewarded by +2 energy units. In locations
`0, `1, the sporadic task S can occur (uncontrollable) and in
this case it must be scheduled (going to `2) which consumes
energy at rate −α. The execution time of S is at most 1 t.u.
(measured by clock x) and successive occurrences of S must
be separated by at least 2 t.u. (measured by clock y.)

`0, +3

[x ≤ 2]

`1, −1 [x ≤ 3]

`2, −α

[x ≤ 1]

x ∶= 0,+2

y ≥ 2, y ∶= 0, x ∶= 0

x ≥ 1, x ∶= 0
y ≥ 2, y ∶= 0, x ∶= 0

x ≤ 1, x ∶= 0

Figure 10: Scheduling Example

On this example, our symbolic algorithm terminates. If
α = 3, the HyTech program (Appendix E) gives a minimal
initial energy level of 3 to be able to win the game (notice
that we start with y = 2 and thus the sporadic task can
arrive at the initial instant.) The optimal strategy from
the point of view of Adam is to trigger the sporadic task
S as often as possible. While a winning strategy for Eve

(scheduler) is to wait in location `0 as long as possible. If
the sporadic task arrives again, it is not before 1 t.u. and
thus we are rewarded by at least 3 energy credits. If the
sporadic does not occur before x = 2, we get 6 energy credits,
and we can switch to `1 which increases energy by 2. This
ensures winning the energy game, see Fig. 11 for a graphical
representation of the winning region. The set of winning
state computed by the HyTech program can be used to
determine the minimal initial credit for each possible initial
state: for example energy ≥ 3 is necessary for the initial
condition x = 0, y = 2.)

Now assume α = 4. The previous strategy is not winning
any more. However, the result of the HyTech program is
now: energy > 4 (for x = 0, y = 2 as initial state.) In this case,
while the minimal (infimum) initial credit is 4, there is no
strategy realizing this value; the game cannot be won with
an initial credit of 4 but rather with any value strictly above
4. Note that this information is collected by our symbolic
algorithm but not by the operator liftc as this operator is
defined using inf, sup operators.

`2 `0 `1

δ

1 2 3 4 5

1

2

3

4

5

x

energy

4 + ε 4 + ε′

Figure 11: Winning Strategy for Eve, α = 4.
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