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Abstract. Priced timed (game) automata extend timed (game) automata with
costs on both locations and transitions. In this paper we focus on rektghab
games for priced timed game automata and prove that the optimal casginfor
ning such a game is computable under conditions concerning the nonesn

of cost and we prove that it is decidable. Under stronger conditionst(gss of
constraints) we prove that in case an optimal strategy exists, we carut®p
state-based winning optimal strategy.

1 Introduction

Optimal Scheduling in Timed Systemin recent years the application of model-checking
techniques to scheduling problems has become an establigkeof research. Static
scheduling problems with timing constraints may often benidated as reachabil-
ity problems on timed automata, viz. as the possibility afcténg a given goal state.
Real-time model checking tools such aré&Nosand UpPAAL have been applied on a
number of industrial and benchmark scheduling problermi?[27,22,24,28].

Often the scheduling strategy needs to take into accourdrtaicty with respect
to the behavior of an environmental context. In such sitmatithe scheduling problem
becomes a dynamic (timed) game between the controller andrthironment, where
the objective for the controller is to finddynamicstrategy that will guarantee the game
to end in a goal state [7,15,26].

Optimality of schedules may be obtained within the framédwafrtimed automata
by associating with each run a performance measure. Thagibgsible to compare
runs and search for the optimal run from an initial configiorato a final (goal) target.
The most obvious performance measure for timed automaleadythat of time itself.
Time-optimality for timed automata was first consideredli][and proved computable
in [27]. The related problem of synthesizing time-optiméhming strategies for timed
game automata was shown computable in [6].
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More recently, the ability to consider more general perfmmge measures has been
given. Priced extensions of timed automata have been intextiwhere a costis asso-
ciated with each locatioAgiving the cost of a unit of time spent ihIn [3] cost-bound
reachability has been shown decidable. [8] and [5] indepstigisolve the cost-optimal
reachability problem for priced timed automata. Efficiemtdrporation in WPAAL is
provided by use of so-called priced zones as a main datasteyi@5]. In [29] the im-
plementation of cost-optimal reachability is improved siderably by exploiting the
duality with linear programming problems over zones (mistdlow problems). More
recently [11], the problem of computing optimafinite schedules (in terms of minimal
limit-ratios) is solved for the model of priced timed autdema

The Optimal Cost Control Problem for Timed Gamea this paper we combine the
notions of game and price and solve the problem of cost-@btiminning strategies
for priced timed game automata.The problem we considerGézeéh a timed game
automatonA, a goal locationGoal, what is the optimal cost we can achieve to reach
Goal in A?". We refer to this problem as the Optimal Cost Problem (OCBjsider the
example of a priced timed game automaton given inFig. 1. Hhereost-rates (cost per
time unit) in locationd, ¢; and/; areb, 10 and1 respectively. IrY; the environment
may choose to move to eithéy or {3 (dashed arrows are uncontrollable). However, due
to the invarianty = 0 this choice must be made instantaneous. Obviously, 6ncels

has been reached the optimal strategy for the controllernsave toGoal immediately
(however there is a discrete cost (rebpnd7) on each discrete transition). The crucial
(and only remaining) question is how long the controllengtavait in ¢, before taking
the transition to/;. Obviously, in order for the controller to win this duratiorust be

no more than two time units. However, what is the optimal cbdor the duration in the
sense that the overall cost of reachiagnl is minimal? Denote by the chosen delay

in ¢y. Then5t 4+ 10(2 — t) + 1 is the minimal cost through, and5¢ + (2 — t) + 7 is

the minimal cost throughs;. As the environment chooses between these two transitions
the best choice for the controller is to delay< 2 such thatnax(21 — 5¢,9 + 4¢) is
minimum, which ist = % giving a minimal cost ofl4}.
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Fig. 1. A Reachability Priced Time Game Automatgh
Related Work Acyclic priced (or weighted) timed games have been studi¢&3] and

the more general case of non-acyclic games have been recendlidered in [1]. In [1],
the problem they consider is “compute the optimal cost withsteps” (we refer to this



bounded problem as the OCP). This is a weaker version than the one we consider
(OCP) and roughly corresponds to unfolding the gamimes and to reducing the
problem to solving an acyclic game. The main result of [1]hattthek-OCP can be
solved in time exponential ik and the size of the automaton under consideration. The
authors also claim that under some non-Zenoness assun(gitiufar to the one we use

in theorem 6) the number of iterations required to compugeatstimal cost (OCP) in
finite and thus that any game can be reduced to an “optimal gafireite number of
steps”. Anyway the number of steps needed to win cannot bedszlin advance so
that they cannot provide any complexity upper bound on theergeneral optimal cost
problem we consider. Moreover the proof of the main theoreft]iis based on the fact
that the computation of the optimal cost brings about atsmiibf each region in at most
an exponential number of subregions. It is not clear thahtireZenoness assumption
does not generate an infinite number of better and bettefurodions all defined on the
same splitting of a region.The existing results mentiorwala for optimal reachability
related to timed game automata and priced timed automateateely, are all based
on various extensions of the so-called classical regiod-zame-techniques.

In this work (following our research report [9]) that was @osimultaneously and
independently from [1], we can compute the optimal cost iadigally different way.
We do not obtain any complexity bound either for the OCP butgive some new
decidability results and strategy synthesis algorithntss Tvork extends the results
of [23,1] in the following ways:

— in both papers [23,1], the definition of the optimal cost isdzhon a recursive
definition of a function (like the function given in definition 11, page 8) that can
be very complex (e.g. in [1]); we propose a new run-based itiefin(equation 2
and definition 9) of the optimal cost that is more natural anabées us to obtain
new results. For instance the definition of the optimal cogB,1] is based on
an infimum-supremum computation: if the optimal cost the algorithm does not
give any hint whethet is actually realized (there is a strategy of cggr if cis the
limit of the optimal cost (there is a family of strategies oktc + ¢ for all ¢ > 0).

In our settings, we can compute the optimal cost and answegubstion whether
an optimal strategy exists or not (corollafies 1 anhd 2). Mees we provide a proof
that non-Zenoness implies termination of our algorithnegtiem 6).

— in addition to the previous new results on optimal cost cotampon that extend the
ones in [23,1] we also tackle the problem of strategy synghds particular we
study the properties of the strategies (memoryless, cogpiendence) needed to
achieve the optimal cost which is a natural question thaeatrin game theory. This
is not dealt with in|[23,1]. For instance we prove (under s@s&umptions) that if
an optimal strategy exists then a state-based cost-indepéestrategy exists and
can be effectively computed (theorem 7).

— finally as described in [10] the algorithms we obtain can bglé@mented in M TECH.

Outline of the paperln section 2 we recall some basics abmaztchability timed games
Section 3 introducepriced timed gametogether with a new run-based definition of
optimality. We also relate our run-based definition of optiity to the recursive one
previously given in[23]. Section 4 is the core of the papeerehwe show how to



compute the optimal cost of a priced timed game as well asngpstrategies. Proofs
are omitted but can be found in [9].

2 Reachability Timed Games (RTG)

In this paper we focus oreachability gameswhere the control objective is to enforce
that the system eventually evolves into a particular state.classical in the literature
to definereachability timed games (RT®j,15,26] to model control problems. In this
section we recall some known general results about RTG.

Timed Transition Systems and Games.

Definition 1 (Timed Transition Systems (TTS)).A timed transition systens a tuple
S = (Q,Qo,Act,—) where(@ is a set of state€), C (@ is the set of initial states,
Act is a finite set of actions, disjoint frof>,, —C @ x X' x @ is a set of edges. We
let ¥ = Act UR>). If (g, e,q') €—, we also writeg — ¢'.

We make the following common assumptions about TTSs:

— 0-DELAY: ¢ = ¢’ ifand only ifg = ¢/,

— ADDITIVITY : if ¢ 4, q' andq’ LN ¢" with d, d’ € R>, theng N q",

— CONTINUITY: if ¢ 4, ¢', then for everyd’ andd” in R such thad = d’ + d”,

there exists/” such thay 2 ¢ 24— ¢/,
— DETERMINISM: if ¢ - ¢/ andq - ¢” with e € X, theng’ = ¢".

A _ to s _eo ti o, el tn 4 en . .
unNp=gqo——¢qo ——q1 —q1 — "o — Gy — Gny1..- INSISA
finite or infinite sequence of alternating timg € R>() and discreted; € Act) steps.
States(p) = {q0,90s,91,4%, - - -+ n,qh, - - - | IS the set of states encounteredoiVe
denote byfirst(p) = qo and if p is finite and has: alternating time and discrete steps
last(p) = gqn. Runs(g, S) is the set of (finite and infinite) runs iff starting fromg.
The set of runs of' is Runs(5) = [, Runs(g, S). We useg - as a shorthand for

“Jq’ s.t.q = ¢’” and extends this notation to finite rups- wheneveriast(p) .

Definition 2 (Timed Games (TG)).A timed gameG = (Q, Qo,Act,—) isa TTS
such thatAct is partitioned intocontrollableactionsAct. and uncontrollable actions
Act,.

Strategies, Reachability Game# strategy [26] is a function that during the cause of
the game constantly gives information as to what the cdetrshould do in order to
win the game. In a given situation the strategy could sugdpestontroller to either i)
“do a particular controllable action” or ii) “do nothing dti$ point in time, just wait”
which will be denoted by the special symbolFor instance if one wants to delay until
some clock value: reache% (as would be a good strategy in the locatigrof Fig. 1)
then the strategy would be: far< % do A and forx = % do the control action from,
to/;.



Definition 3 (Strategy).LetG = (Q, Qo, Act,—) be a TG. Astrategyf overG is a
partial function fromRuns(G) to Act. U {\}.

We denotestrat(G) the set of strategies ovét. A strategyf is state-basedvhen-
everVp,p' € Runs(G),last(p) = last(p’) implies thatf(p) = f(p'). State-based
strategies are also calledemorylesstrategies in game theory [15,30]. The possible
runs that may be realized when the controller follows a paldir strategy is defined by
the following notion of outcome (see e.g. [15]):

Definition 4 (Outcome).LetG = (Q, Qo, Act,—) be a TG andf a strategy over
G. TheoutcomeOutcome(q, f) of f from g in G is the subset oRuns(q, G) defined
inductively by:

— ¢ € Outcome(g, f),
— if p € Outcome(q, f) thenp’ = p = ¢’ € Outcome(q, f) if p’ € Runs(q, G) and
one of the following three conditions hold:
1. e € Act,,
2. e € Act. ande = f(p),
3. e € Rugand¥0 < ¢ < e,3¢" € Q s.t.last(p) —— ¢" A f(p —— ¢") = A,
— aninfinite runpisin € Outcome(q, f) if all the finite prefixes of are inOutcome(q, f).

Note that some strategies may block the evolution at somet fjoi instance if
condition 3 above is not satisfied. One has to be careful winethasizing strategies to
ensure condition 3 and this is not trivial (see [9], theorefarletails).

Definition 5 (Reachability Timed Games (RTG)).A reachability timed gamé' =
(Q, Qo, Goal, Act,—) is a timed gam€Q, Qo, Act, —) with a distinguished set of
goal state$oal C @ such that for ally € Goal, ¢ — ¢’ impliesq’ € Goal.

If GisaRTG, arum is awinning runif States(p)NGoal # (). We denotéVinRuns(q, G)
the set of winning runs i’ from gq.

For reachability games one has to choose a semantics fontoliable actions:
either i) they can only spoil the game and it is up to the cdieréo do some control-
lable action to win (/[7,26,23]) or ii) if at some stateonly an uncontrollable action is
enabled but forced to happen and leads to a winning statestiseminning. The choice
we make is to follow the framework used by La Toatal in [23,1] where uncontrol-
lable actions cannot help to win. This choice is made for #ie of simplicity (mainly
for the proof of theorem]3). However, we can handle any resisiersemantics like ii)
above (see [10]) but the proofs are more involved.

We now formalize the previous notions.aximal runp is either an infinite run
(supposing strict alternation of delays and actions) oritgefin p that satisfies either
(i) last(p) € Goal orii) Vt > 0, if p - ¢ % thena € Act, (i.e. the only possible
next discrete actions frortust(p), if any, are uncontrollable actions). A strategys
winningfrom ¢ if all maximal runs inOutcome(q, f) are inWinRuns(g, G). A stateq
in a RTGG is winningif there exists a winning strategf/from ¢ in G. We denote by
W(G) the set of winning states i¥ andWinStrat(q, G) the set of winning strategies
from ¢ overG.



Control of Linear Hybrid Games.In the remainder of this section we summatrize pre-
vious results [15,26,31] obtained for particular clasdeRTG: Linear Hybrid Games
(LHG).

Let X be a finite set of real-valued variables. We derldgtg X) the set of linear
constraints over the variables &. Lin.(X) is the subset of convex linear constraints
over X. A valuationof the variables inX is a mapping fromX to R (thus an element
of R¥X). For a valuationv and alinear assignmerta we denotev[a] the valuation
defined byv[a](x) = a(x)(v). AssigiiX) is the set of linear assignments ovér For
r: X — Qandd € R>p we denotev + r - § the valuation s.t. for alk € X,
(v+7r-6)(x) =v(x)+r(z)-d.

Definition 6 (LHG). A Linear Hybrid GameH = (L,/y,Act, X, E,inv,Rate is a
tuple wherel is a finite set olocations ¢y € L is theinitial location,Act = Act.UAct,,

is the set ofactions(controllable and uncontrollable actionsX is a finite set ofreal-
valued variablest C L x Lin(X) x Act x Assigni{X) x L is a finite set oftransitions
inv: L — Lin.(X) associates to each location itsvariant Rate: L — (X — Q)
associates to each location and variablealution rate Areachabilitt HG is a LHG
with a distinguished set of locatioi®al C L (with no outgoing edges). It defines the
set of goal stateGoal x RX.

The semantics of a LH& = (L, ¢y, Act, X, E,inv,Ratg isa TTSSy = ((L x
RX, (¢y,0), Act, —)) where— consists of: i)discrete steps(/,v) —— (¢/,v") if
there existg/, g, e, o, ¢') € Es.t.v |= g andv’ = v[a]; i) time steps(¢, v) 2, (£,v")
if 0 € R>g,v' = v+ Ratd/) - § andv, v’ € inv(¢).

For reachability LHG, the computation of the winning statebased on the defi-
nition of acontrollable predecessomsperator[15,26]. Let) = L x R¥X. For a sub-
setX C Q anda € Act we definePred*(X) = {¢ € Q | ¢ % ¢,¢ € X}.
Now the controllable and uncontrollable discrete predsmessof X are defined by
cPred(X) = U, caq, Pred®(X), respectivelyuPred(X) = U, cac, Pred“(X). We
also need a notion cfafetimed predecessors of a s€tw.r.t. a sefy. Intuitively a state
qisinPred,(X,Y) if from ¢ we can reacly’ € X by time elapsing and along the path
from ¢ to ¢’ we avoidY". Formally this is defined by:

Pred;(X,Y) = {g € Q| 36 € RsgSt.g - ¢, ¢ € X andPost, 4(¢) C Y}

wherePosty 51(¢) = {¢' € Q | 3t € [0,0] s.t.q AN ¢’'}. Now we are able to define the
controllable predecessorperatorr as follows:

7(X) = Pred; (X U cPred(X), uPred(X)) (1)

Note that this definition ofr captures the choice that uncontrollable actions cannot be
used to win. A symbolic version of the previous operatorsimdefined on LHG [15,26].
Hence there is a semi-algorith@ompWin which computes the least fixed point of
AX .{Goal} U n(X) as the limit of an increasing sequence of sets of statedifgtar
with the initial stateGoal). If H is a reachability LHG, the result of the computation
X .{Goal} Un(X) is denotedCompWin(H).

L A linear assignment assigns to each variable a linear expression.



Theorem 1 (Symbolic Algorithm for LHG [15,19]). W(Sy) = CompWin(H) for

a reachability LHGH and hence&CompWin is a symbolic semi-algorithm for comput-
ing the winning states of a reachability LHG. Moreov@&mpWin terminates for the
subclass of Initialized Rectangular Games|[19].

As for controller synthesis the previous algorithm allowss@ compute the winning
states of a game but the extraction of strategies is not madieylarly explicit. The
proof of the following theorem (given in [9]) provides a syatils algorithm (assuming
time determinism) that synthesizes winning strategies:

Theorem 2 (Synthesis of Winning Strategies([9])).Let H be a LHG. If the semi-
algorithm CompWin terminates forH, then we can compute a polyhe@aﬂtrategy
which is winning in each state @ompWin(H) and state-based.

3 Priced Timed Games (PTG)

In this section we defin®riced Timed Games (PTG)Ve focus orreachability PTG
(RPTG)where the aim is to reach a particular state of the game dotiestpossible
cost. We give a new run-based definition of thitimal cost We then relate our defi-
nition with the one given in [23] (note that the definition df feems close to the one
in [23] but it is not clear enough for us how close they are) prave both definitions
are indeed equivalent.

Priced Timed Games.

Definition 7 (Priced Timed Transition Systems (PTTS)).A priced timed transition
systemis a pair (.5, Cost) whereS = (Q, Qo,Act,—) is a TTS andCost is a cost
functioni.e. a mapping from— to R that satisfies:

— PRICEADDITIVITY : if ¢ - ¢’ andq’ -~ ¢" withd, d’ € R0, thenCost(g _atd |

q") = Cost(q 4, q") + Cost(q’ A, q").
— BOUNDED CoST RATE: there existsK € N such that for every 4, q' where
d € Rsg, Cost(q - ¢/) < d.K

For a transitionqg — ¢/, Cost(¢ — ¢') is the costof the transition and we note
g g ifp= Cost(q = ¢).

All notions concerning runs on TTS extend straightforwatdIPTTS. LetS be a PTTS
andp = qo = ¢ =5 ... = ¢, afinite run% of S. Thecostof p is defined by

Cost(p) = Y11=y Cost(q; —— qi11).

2 A strategy f is polyhedral if for alla € Act. U {)\}, f~(a) is a finite union of convex
polyhedra for each location of the LHG.

8 We are not interested in defining the cost of an infinite run as we will onlgasts of winning
runs which must be finite in the games we play.



Definition 8 (Priced Timed Games).A priced timed gaméPTG) (resp. Reachability
PTG) is a pairG = (5, Cost) such thatS is a TG (resp. RTG) andost is a cost
function.

All the notions like strategies, outcomes, winning statesadready defined for (R)TG
and carry over in a natural way to (R)PTG. TtestCost(q, /) of a winning strategy
f € WinStrat(q, Q) is defined by:

Cost(q, f) = sup {Cost(p) | p € Outcome(q, f)} 2
We then define the optimal cost as follows:

Definition 9 (Optimal Cost for a RPTG). Let G be a RPTG and be a state inG.
Thereachable costs s€bst(q) fromg in G is defined by:

Cost(q) = {Cost(q, f) | f € WinStrat(q, G)}

Theoptimal cost fromy in G is OptCost(q) = inf Cost(q). Theoptimal costin G is
sup,eq, OptCost(q) whereQ, denotes the set of initial states.

Definition 10 (Optimal Strategies for a RPTG).LetG be a RPTG ang a state inG.
A winning strategyf € WinStrat(q, G) is said to beoptimalwheneverCost(q, f) =
OptCost(q).

Optimal winning strategies do not always exist, even for BBTderiving from
timed automata (see [9]). A family of winning strategigs) which get arbitrarily close
to the optimal cost may be rather determined. Our aim is nfaldy\\Ve want to 1) com-
pute the optimal cost of winning, 2) decide whether theraisgtimal strategy, and 3)
in case there is an optimal strategy compute one such sir&efpre giving a solution
to the previous problems we relate our definition of costroplity to the one given
in[23,1].

Recursive Definition of the Optimal Costln [23,1] a method for computing the opti-
mal cost in priced timed games is introduced: it is definechasoptimal cost one can

expect from a state by a function satisfying a set of recarsguations, and not using a
run-based definition as we did in the last subsection. Wetggveafter the definition of

the function used in [23] and prove that it does correspormutaun-based definition

of optimal cost. In/[1], a similar but more involved definitias proposed, we do not
detail this last definition here.

Definition 11 (The O function (Adapted from [23])). LetG be a RPTG. Le® be the
function fromQ to R>(U{+o0} that is the least fixed poifibf the following functional:

* The righthand-sides of the equations f0fq) defines a functionalF on (Q — Rxo U
{+o0}). (Q — Rxo U {+o0}) equipped with the natural lifting o£ onR>q U {+o0}
constitutes a complete lattice. Al§ocan be quite easily seen to be a monotonic functional on
this lattice. It follows from Tarski's fixed point theory that the least fix gaifiF exists.



min mi,n p+0 +0(") | .p+0() | (1)
;) &P "
O(q) = tinf max ! cenct, (0)
P,
g sup max  p' +p" +0(¢") (2)
= t' o’ ., WP 11
q t/Stq 1 ueActuq

This definition can be justified by the following argumentsni (2) of Def] 11 gives
the maximum cost that an uncontrollable action can leaditdsftaken before; note
that by definitionsup ) = —oo and that (2) is always defined and the outermost max is
thus always defined; item (1) gives the best you can expeatahérollable action can

be fired; if from¢’ no controllable action can be taken, then eitfigrthere is a time
step leading to somg with O(¢’) finite or (i4) no such state’ is reachable from: as

our semantics specifies that no uncontrollable action carsée to win, we can not win
from ¢ (except ifg € Goal) and the optimal cost will be-co. We have the following
theorem that relates the two definitions:

Theorem 3. LetG = (S, Cost) be a RPTG induced by a LHG ariglits set of states.
ThenO(q) = OptCost(q) for all g € Q8

4 Reducing Priced Timed Games to Timed Games

In this section we show that computing the optimal cost to avipriced timed game
amounts to solving a control problem (without cost).

Priced Timed Game AutomatalLet X be a finite set of real-valued variables called
clocks. We denot&(X) the set of constraints generated by the grammas:::= = ~

k| onpwherek € Z, z,y € X and~€ {<, <,=,>,> }. A valuationof the variables
in X is a mapping fromX to R (thus an element &&<). For a valuatiory and a set
R C X we denotey|R] the valuation that agrees withon X \ R and is zero or?. We
denotev + ¢ for § € R the valuation s.t. for alt € X, (v + 0)(z) = v(z) + 0.

Definition 12 (PTGA). APriced Timed Game Automatoh= (L, ¢y, Act, X, E, inv, f)

is a tuple whereL is a finite set oflocations ¢, € L is theinitial location, Act =
Act. U Act,, is the set ofactions(partitioned into controllable and uncontrollable ac-
tions), X is a finite set ofreal-valued clocksE C L x B(X) x Act x 2X x Lis a
finite set oftransitions inv : . — B(X) associates to each location itsvariant

f: LUFE — N associates to each locationcast rateand to each discrete transition

a cost AreachabilityPTGA (RPTGA) is a PTGA with a distinguished set of locations
Goal C L (with no outgoing edges). It defines the set of goal states x R< .

5 Note that if a statg € @ is not winning, bothO(¢) andOptCost(q) are+oo.
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The semantics of a PTGA = (L, ¢y, Act, X, E,inv, f) is a PTGS4 = ((L x
R, (¢o,0), Act, —), Cost) where— consists of: iYliscrete stepsit, v) — (¢, ')
if there existy/, g,e, R, {') € E s.t.v = g andv’ = v[R]; Cost((£,v) — (¢',v")) =
F(t,g,e, R, 0) ;i) time stepsit,v) - (£,0') if § € Rsg, v’ = v + 6 andv, v’ €

inv(¢); andCost((¢,v) 2, (¢,v")) =6 - f(£). Note that this definition o€ost gives a
cost function as defined in Déf. 7.

From Optimal Reachability Game to Reachability GamaAssume we want to compute
the optimal cost to win a reachability priced timed game anatton A. We define a
(usual and unpriced) LH@& as follows: we use a variabtest in the LHG to stand for
the cost value. We build/ with the same discrete structure Asand specify a rate for
cost in each location: if the cost increases with a rate-éfper unit of time in4, then
we set the derivative afost to be —k in H; if the cost of a discrete transition sk
in A, then we updateostby cost:= cost— k in H. To each state in (the semantics
of) A there are many corresponding states:) in H, wherec is the value of theost
variable. For such a stafe, ¢) we denotedcost(g, ¢) the statey. If X is a set of states
in (the semantics off then3costX = {¢| 3¢ > 0| (q,c) € X}. From the PTGA of
Fig.[1 we obtain the LHG of Fig. 2.

T > 2 ¢
cost’ = cost— 1

[L’<2,C ' =0 -7 deost _
@ B = @
~_u

decost __ =0 T~
. — —9O )

T > 2; ¢
cost’= cost— 7

Fig. 2. The Linear Hybrid Gaméi.

Now we solve the following control problem on the LHG: can wien H with the
goal statesoal A cost > 0 ? Intuitively speaking we are asking the question: "what is
the minimal amount of resourceo(st) needed to win the control gani€?” For a PTGA
A we can compute the winning stateskifwith the semi-algorithn€ompWin (defined
atthe end of section 2) and if it terminates the wining setatesiVy = CompWin(H)
is a union of zones of the foriff, R A cost > h) where/ is a location,R C R, h
is a piece-wise affine function o and-€ {>, >}. Hence we have the answer to the
optimal reachability game: we intersect the set of inittates with the set of winning
statedVy, and in case it is not empty, the projection on ¢het axis yields a constraint
on the cost likecost - k with k € Q> and>€ {>,>}. By definition of winning set
of states in reachability gameas. this is the largest set from which we can win, no cost
lower than or equal té is winning and we can deduce thats the optimal cost. Also
we can decide whether there is an optimal strategy or ngti#fequal to> there is no
optimal strategy and if is > there is one.
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Note that with our reduction of optimal control for PTGA tontml of LHG, the
cost information becomes part of the state and that the munsand H are closely
related. The correctness of the reduction is then given &yéxt theorem.

Theorem 4. Let A be a RPTGA and{ its corresponding LHG (as defined above). If

the semi-algorithnCompWin terminates ford and if Wy = CompWin(H), then: 1)

CompWin terminates forA and W4 def CompWin(A) = Jcost. Wy; and 2) (¢, ¢) €

Wy <= there existy € WinStrat(g, W) with Cost(g, ) < c.

Computation of the Optimal Cost and Strategy.et X C RZ,. Theupward closure
of X, denoted/ X isthe setf X = {2/ | 3z € X s.t.a’ > z}.

Theorem 5. Let A be a RPTGA and{ its corresponding LHG. If the semi-algorithm
CompWin terminates forH then forq € W4, 1Cost(q) = {c | (q,¢) € Wx}.

Corollary 1 (Optimal Cost). Let A be a RPTGA and/ its corresponding LHG. If the
semi-algorithmCompWin terminates forH then{Cost(¢y, 0) is computable and is of
the formcost > k (left-closed) orcost > k (left-open) withk € Q>¢. In addition we
get thatOptCost(ly, 0) = k.

Corollary 2 (Existence of an Optimal Strategy).Let A be a RPTGA. If Cost(¢y, 0)
is left-open then there is no optimal strategy. Otherwisearecompute a winning and
optimal strategy.

Termination Criterion & Optimal Strategies.

Theorem 6. Let A be a RPTGA satisfying the following hypothesesA1$ bounded,
i.e. all clocks inA are bounded ; 2) the cost function dfis strictly non-zenoi.e. there
exists some > 0 such that the accumulated cost of every cycle in the regitonaaton
associated with4 is at leastx. Then the semi-algorithfGompWin terminates forH
whereH is the LHG associated witH.

An enhanced proof of theorém 6 is given in appendix A.

Note that strategy built in corollary 2 are state-basedHdout isa priori no more
state-based foA: indeed the strategy fall depends on the current value of the cost
(which is part of the state ifif). The strategy ford is thus dependent on the run and
not memoryless. More precisely it depends on the last §tatg of the run and on the
accumulated cost along the run. The example of[Fig. 3 in agipdshows that it is
not straightforward to build an optimal state-based (wititbhe accumulated cost).

Nevertheless, we now give a sufficient condition for the texise of optimal cost-
independent strategies and exhibit a restricted classtofreata for which this condi-
tions holds.

Theorem 7. Let A be a RPTGA and/ the associated LHG. lfompWin terminates for
H andWy is a union of sets of the ford, R, cost> h) then there exists a state-based
strategyf defined oveiV4, = JcostWy, s.t. for eachy € Wy, f € WinStrat(q, Wa)
andCost(q, f) = OptCost(q).
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Note that under the previous conditions we build a strafegyich isuniformly optimal
i.e. optimal for all states of//4. A syntactical criterion to enforce the condition of
theorenT 7 is that the constraints (guards) on controllabt®rs are non-strict and
constraints on uncontrollable actions are strict ( As tHated by Figl. 3, hypotheses on
the syntax of the guards seem quite natural to get Theoremillstrated by Fid. 3 in
appendix B, hypotheses on the syntax of the guards seemnaiteal).

Remarks on the hypotheses in Theoreims 6 arthe. hypothesis onl being bounded
is not restrictive because all priced timed automata carrdrestormed into bounded
priced timed automata having the same behaviours (see fon@e [25]). The strict
non-zenoness of the cost function can be checked on prioegtitgame automata:
indeed it is sufficient to check whether there is a cycle whpraee is0 in the so-called
“corner-point abstraction” (see [8,11]) ; then, if therenis cycle with cosb, it means
that the cost is strictly non-zeno, otherwise, it is notc#lyinon-zeno.

5 Conclusion

In this paper we have given a new run-based definition of cpsmality for priced
timed games. This definition enables us to prove the follgwesults: the optimal cost
can be computed for the class of priced timed game automé#taavetrictly non-zeno
cost. Moreover we can decide whether there exists an op8tralegy which could
not be done in previous works [23,1]. In case an optimal efraexists we can com-
pute a witness. Finally we give some additional results eamiag the type of informa-
tion needed by the optimal strategy and exhibit a class ekgrtimed game automata
for which optimal state-based (no need to keep track of tts iodormation) can be
synthetized. Our strategy extraction algorithm has beguiedmented using the tool
HYTECH[10].

Our future work will be on extending the class of systems fbiol termination is
ensured. Our claim is that there is no need for the strictzemeness hypothesis for ter-
mination. Another direction will consist in extending ouofk to optimal safety games
where we want to minimize for example the cost per time uihglinfinite schedules
whatever the environment does, which would naturally edgdvoth this current work
and [11].

References

1. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability @gited timed
games. IrProc. 31st International Colloquium on Automata, Languages andaraging
(ICALP’04), LNCS. Springer, 2004. To appear.

2. Y. Abdeddaim. Modélisation et résolution de problémes d’ordonnancement a l'aide
d’automates temporisé®hD thesis, Institut National Polytechnique de Grenoble, Grenoble,
France, 2002.

3. R. Alur, C. Courcoubetis, and T. Henzinger. Computing accumuldétalys in real-time
systems. IrProc. 5th International Conference on Computer Aided Verification (G2)
vol. 697 of LNCS pp. 181-193. Springer, 1993.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

13

R. Alur and D. Dill. A theory of timed automataTheoretical Computer Science (TCS)
126(2):183-235, 1994.

. R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timexdireata. InProc.

4th Int. Work. Hybrid Systems: Computation and Control (HSCC'0a). 2034 ofLNCS
pp. 49-62. Springer, 2001.

. E. Asarin and O. Maler. As soon as possible: Time optimal contrdiffeed automata. In

Proc. 2nd Int. Work. Hybrid Systems: Computation and Control (H®GVvol. 1569 of
LNCS pp. 19-30. Springer, 1999.

. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthegisifieed automata. In

Proc. IFAC Symposium on System Structure and Canpqol 469-474. Elsevier Science,
1998.

. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Petterss&gnlijn, and F. Vaandrager.

Minimum-cost reachability for priced timed automata.Froc. 4th International Workshop
on Hybrid Systems: Computation and Control (HSCC,@b). 2034 ofLNCS pp. 147-161.
Springer, 2001.

. P. Bouyer, F. Cassez, E. Fleury and K. Larsen. Optimal Strategi€siced Timed Game

Automata. BRICS Report Series, February 2004.

P. Bouyer, F. Cassez, E. Fleury and K. Larsen. Synthesis tin@lpStrategies Using
HYTECH. In Proc. Games in Design and Verification (GDV’'04), ENTCS. Elseve04. To
appear.

P. Bouyer, E. Brinksma, and K. Larsen. Staying alive as cheappossible. IfProc. 7th
International Workshop on Hybrid Systems: Computation and Conti83&'04) vol. 2993
of LNCS pp. 203-218. Springer, 2004.

E. Brinksma, A. Mader, and A. Fehnker. Verification and optimiratiba PLC control
scheduleJournal of Software Tools for Technology Transfer (ST#A()):21-33, 2002.

F. Cassez, T. Henzinger, and J.-F. Raskin. A comparisomdfad@roblems for timed and
hybrid systems. IProc. 5th Int. Workshop on Hybrid Systems: Computation and Control
(HSCC'02) vol. 2289 ofLNCS pp. 134-148. Springer, 2002.

C. Courcoubetis and M. Yannakakis. Minimum and maximum delalyl@nas in real-time
systemsFormal Methods in System Desigi(4):385-415, 1992.

L. De Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithordiifinite-state games.
In Proc. 12th International Conference on Concurrency Theory (COR©1), vol. 2154 of
LNCS pp. 536-550. Springer, 2001.

M. De WuIf, L. Doyen, and J.-F Raskin. Almost ASAP semanticenirtimed models to
timed implementations. IRroc. 7th International Workshop on Hybrid Systems: Computa-
tion and Control (HSCC’04)vol. 2993 ofLNCS pp. 296-310. Springer, 2004.

A. Fehnker. Scheduling a steel plant with timed automat®rde. 6th Int. Conf. Real-Time
Computing Systems and Applications (RTCSA'§9) 280-286. IEEE Computer Society
Press, 1999.

T. Henzinger. The theory of hybrid automata. Aroc. 11th IEEE Annual Symposim on
Logic in Computer Science (LICS'96)p. 278—-292. IEEE Computer Society Press, 1996.
T. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybaiches. InProc. 10th
International Conference on Concurrency Theory (CONCUR’98). 1664 ofLNCS pp.
320-335. Springer, 1999.

T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guidedtorecH. In Proc. 1st Inter-
national Conference on Tools and Algorithms for the Construction and Aisady Systems
(TACAS'95) vol. 1019 ofLNCS pp. 41-71. Springer, 1995.

T. Henzinger, P.-H. Ho, and H. Wong-Toi.YRIECH: A model-checker for hybrid systems.
Journal on Software Tools for Technology Transfer (STI{)-2):110-122, 1997.



14

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

. T. Hune, K. Larsen, and P. Pettersson. Guided synthesis obtprdgrams using/PPAAL.

In Proc. IEEE ICDS Int. Work. Distributed Systems Verification and Validatgm E15—
E22. IEEE Computer Society Press, 2000.

S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-rebitibaand control for acyclic
weighted timed automata. Proc. 2nd IFIP International Conference on Theoretical Com-
puter Science (TCS 20Q2)ol. 223 of IFIP Conference Proceedingpp. 485—497. Kluwer,
2002.

K. Larsen. Resource-efficient scheduling for real time systémPBroc. 3rd International
Conference on Embedded Software (EMSOFT'08) 2855 ofLNCS pp. 16-19. Springer,
2003. Invited presentation.

K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hun®e®ersson, and J. Romijn.
As cheap as possible: Efficient cost-optimal reachability for priced tautdmata. IrProc.
13th Int. Conf. Computer Aided Verification (CAV’'Q1pl. 2102 of LNCS pp. 493-505.
Springer, 2001.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discretedaltas for timed systems.
In Proc. 12th Annual Symposium on Theoretical Aspects of Computerc8(i8TACS’'95)
vol. 900 ofLNCS pp. 229-242. Springer, 1995.

P. Niebert, S. Tripakis, and S. Yovine. Minimum-time reachability foetimutomata. In
Proc. 8th IEEE Mediterranean Conference on Control and Automaf600.

P. Niebert and S. Yovine. Computing efficient operations schéonehemical plants in
multi-batch mode European Journal of Control7(4):440-453, 2001.

J. Rasmussen, K. Larsen, and K. Subramani. Resource-bgtimduling using priced
timed automata. IrProc. 10th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACASGdl) 2988 of LNCS pp. 220-235.
Springer, 2004.

W. Thomas. On the synthesis of strategies in infinite gamé&soin 12th Annual Symposium
on Theoretical Aspects of Computer Science (STAC3/8500, pp. 1-13. Springer, 1995.
Invited talk.

H. Wong-Toi. The synthesis of controllers for linear hybrid automé&iaProc. 36th IEEE
Conference on Decision and Contrpp. 4607-4612. IEEE Computer Society Press, 1997.



15

A Proof of Termination

Theorem 7. Let A be a RPTGA satisfying the following hypotheses:

— Ais bounded, i.e. all clocks id are bounded ;

— the cost function ofd is strictly non-zengi.e. there exists some > 0 such that
the accumulated cost of every cycle in the region automassod@ated with4 is
at leastx.

Then the semi-algorithiompWin terminates foilG;, whereH is the LHG associated
with A.

Sketch of proofAfter a finite number of iterations dompWin we obtain a seR of
regions of the form(¢, R, cost > f) where f is a piecewise affine function OR®.
Assumef; p, is the cost function obtained after reaching il occurrence of/, R)
by computing backward with the semi-algoritf@ampWin.

We know that the semi-algorith@ompWin ter- cos
minates forG i without the cost variable (this is

a timed automaton game as in [7,26]) and thism7

entails that abstracting away the cost function ¢# F===========---—- 7\

in R gives a finite number ofost-freeregions M p-f- - - - - - - -« - - - - - VR
(¢, R). To prove termination orizy it suffices 52 K
to prove that for each such regi¢h R) there is X S
somei € N such that! ff ,(R) C1 f}r(R). Y= "
As all clocks are bounded there exists a maxi- 92 K
mum M  and a minimumn; ,, cost value for As
the functlonfé r onregion(¢, R) (see the figure me R" L
on the righthand side for the case the PTGA has S 1

only one clock). Me,R*

Now if we encounter thé: + 1)-th occurrence of¢, R) when computing backward
with CompWin, we havemle > ml, r + 1 x k (see the previous figure) as each
cycle increases the cost of at leastor any point inR (strictly non-zenoness of the

cost). Definen(¢, R) = [MW . As soon as we have encountered th¢/, R))-

th occurrence of/, R) (7 on the previous figure) we havez(é’R) > Mj  and thus
ik ™ (R) S} p(R).
On each branch obtained in the tree corresponding to théiaeid) computation

of CompWin, once(¢, R) has appeared(¢, R) times no better cost will be added for
region(¢, R). HenceCompWin terminates. O

5 Note that cost constraints could be of the fazost > f as well, but this does not affect our
termination argument.
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B About State-Based Optimal Strategies

The most natural way to define a state-based (without costegly would be to take
in each staté/, v) the action given by the strategy i in the statg/, v, ¢) with some
minimal ¢. Doing this would result in a strategysuch thatf(¢;,2 < 1) = A. Such a
strategy is however not winning. In this particular caseces build an optimal strategy
f* the cost of which i8: f*(¢g,z < 1) = A, f*(lo,z =1) = ¢, f*({1,2 < 1) = ¢,

[ by, x < 1) = Aandf*(¢2,2 = 1) = c. This strategy is optimal i¢y, 0) but is not
(and needs not to be) optimal in stdtefor example. From this observation we see that
it is difficult to exhibit an algorithm for building a stateabed (with no cost) winning
strategy.

Cost(fp) =1 Cost(41) =1 Cost(£2) = 2
r<l;u ,@ r<l;c @ z=1;c¢, Cost =0
N 2/
r<l1 r<1

r=1;c Cost="7

Fig. 3. Priced Timed Gamel
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