Fundamenta Informaticae 178 (2020) 1-27
DOI 10.3233/FI-2020-1950
10S Press

Verification and Parameter Synthesis for Real-Time Programs
using Refinement of Trace Abstraction®

Franck Cassez’
Department of Computing
Macquarie University, Sydney, Australia

franck.cassez@mg.edu.au

Peter Gjgl Jensen
Department of Computer Science
Aalborg University, Denmark
pgi@cs.aau.dk

Kim Guldstrand Larsen
Department of Computer Science
Aalborg University, Denmark
kgl@cs.aau.dk

Abstract. We address the safety verification and synthesis problems for real-time systems. We
introduce real-time programs that are made of instructions that can perform assignments to dis-
crete and real-valued variables. They are general enough to capture interesting classes of timed
systems such as timed automata, stopwatch automata, time(d) Petri nets and hybrid automata.
We propose a semi-algorithm using refinement of trace abstractions to solve both the reacha-
bility verification problem and the parameter synthesis problem for real-time programs. All of
the algorithms proposed have been implemented and we have conducted a series of experiments,
comparing the performance of our new approach to state-of-the-art tools in classical reachability,
robustness analysis and parameter synthesis for timed systems. We show that our new method
provides solutions to problems which are unsolvable by the current state-of-the-art tools.

* A preliminary version of this work appeared in [1].
T Address for correspondence: Department of Computing, Macquarie University, Sydney, Australia

2 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

1. Introduction

Model-checking is a widely used formal method to assist in verifying software systems. A wide
range of model-checking techniques and tools are available and there are numerous successful ap-
plications in the safety-critical industry and the hardware industry — in addition the approach is see-
ing an increasing adoption in the general software engineering community. The main limitation of
this formal verification technique is the so-called state explosion problem. Abstraction refinement
techniques were introduced to overcome this problem. The most well-known technique is prob-
ably the Counter Example Guided Abstraction Refinement (CEGAR) method pioneered by Clarke
et al. [2]. In this method the state space is abstracted with predicates on the concrete values of
the program variables. The (counter-example guided) trace abstraction refinement (TAR) method
was proposed later by Heizmann er al. [3, 4] and is based on abstracting the set of traces of a
program rather than the set of states. These two techniques have been widely used in the con-
text of software verification. Their effectiveness and versatility in verifying qualitative (or func-
tional) properties of C programs is reflected in the most recent Software Verification competition
results [5].

Analysis of timed systems. Reasoning about quantitative properties of programs requires extended
modeling features like real-time clocks. Timed Automata [6] (TA), introduced by Alur and Dill in
1989, is a very popular formalism to model real-time systems with dense-time clocks. Efficient sym-
bolic model-checking techniques for TA are implemented in the real-time model-checker UPPAAL [7].
Extending TA, e.g., with the ability to stop and resume clocks (stopwatches), leads to undecidability
of the reachability problem [8, 9] which is the basic verification problem. As a result, semi-algorithms
have been designed to verify extended classes of TA e.g., hybrid automata, and are implemented in a
number of dedicated tools [10, 11, 12]. However, a common difficulty with the analysis of quantitative
properties of timed automata and extensions thereof is that specialized data-structures are needed for
each extension and each type of problem. As a consequence, the analysis tools have special-purpose
efficient algorithms and data-structures suited and optimized only towards their specific problem and
extension.

In this work we aim to provide a uniform solution to the analysis of timed systems by designing
a generic semi-algorithm to analyze real-time programs which semantically captures a wide range of
specification formalisms, including hybrid automata. We demonstrate that our new method provides
solutions to problems which are unsolvable by the current state-of-the-art tools. We also show that our
technique can be extended to solve specific problems like robustness and parameter synthesis.

Related work. The trace abstraction refinement (TAR) technique was proposed by Heizmann et
al. [3, 4]. Wang et al. [13] proposed the use of TAR for the analysis of timed automata. However,
their approach is based on the computation of the standard zones which comes with usual limitations:
it is not applicable to extensions of TA (e.g., stopwatch automata) and can only discover predicates
that are zones. Moreover, their approach has not been implemented and it is not clear whether it can
outperform state-of-the-art techniques e.g., as implemented in UPPAAL.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 3

Several works have investigated CEGAR techniques in both timed and hybrid settings [14, 15,
16, 17]. The CEGAR technique has also been extended to parameter-synthesis [16]. As proved by
Heizmann et al. [3], such methods are special cases of the TAR framework.

The IC3 [18] verification approach has also been deployed for the verification of hybrid sys-
tems [19] but relies on a fix-point computation over a combined encoding of the transition-function,
rather than a trace-subtraction approach. IC3 approaches and the likes have also been used for param-
eter synthesis [20, 19, 21]. While similar fundamental techniques are leveraged in these approaches
(e.g. [20] utilizes Fourier-Motzkin-elimination), we note that our refinement method (TAR) is rad-
ically different in nature. IC3 is an iterative fix-point computation over an up-front and complete
encoding of the transition-function.

Since the publication of a preliminary version of this paper [1], Kafle et al. [22] have demonstrated
a novel method of parameter synthesis for timed systems via Constrained Horn Clauses (CHC). While
their approach shows promising results for the Fischers parameter synthesis examples from [1], it
currently relies on manual translation of a given problem into CHC format, hindering its applicability
to large systems.

As mentioned earlier, our technique allows for a unique and logical (predicates) representation of
sets of states accross different models (timed, hybrid automata) and problems (reachability, robustness,
parameter synthesis), which is in contrast to state-of-the-art tools such as UPPAAL [7], SPACEEX [11],
HYTECH [12], PHAVER [10], VERIFIX [23], SYMROB [24] and IMITATOR [25] that rely on special-
purpose polyhedra libraries to realize their computation.

We propose a new technique which is radically different to previous approaches and leverages
the power of SMT-solvers to discover non-trivial invariants for a large class of real-time systems
including the class of hybrid automata. All the previous analysis techniques compute, reduce and
check the state-space either up-front or on-the-fly, leading to the construction of significant parts of
the state-space. In contrast our approach is an abstraction refinement method and the refinements
are built by discovering non-trivial program invariants that are not always expressible using zones, or
polyehdra. For instance they can express constraints that combine discrete and continuous variables
of the system. This enables us to use our algorithm on non-decidable classes like stopwatch automata,
and successfully (i.e., the algorithm terminates) check instances of these classes. A simple example is
discussed in Section 2.

Our contribution. We propose a variant of the trace abstractions refinement (TAR) technique to
solve the reachability problem and the parameter synthesis problem for real-time programs. Our
approach combines an automata-theoretic framework and state-of-the-art Satisfiability Modulo Theory
(SMT) techniques for discovering program invariants. We demonstrate on a number of case-studies
that this new approach can compute answers to problems unsolvable by special-purpose tools and
algorithms in their respective domain.

This paper is an extended version of [1] in which we first introduced TAR for real-time programs.
In this extended version, we provide a comprehensive introduction illustrated by more examples, ex-
tensions of the original algorithms from [1] and the proofs of theorems and lemmas.

4 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

th
" ()
i to t2
—{ ¢ > o > 01) 0o
Discrete Instructions Continuous Instructions
Edge Guard Update Location Rate
i True x:=y:=z:=0 L dy/dt=1
to True z:=0 A dy/dt=1
t1 x== x:=0 fq dy/dt=0
to x-y>=1 and z<1 - Ly dy/dt=0

Figure 1: Real-time program P;: CFG A; of P; (top) with the accepting location /5 and its instructions
(bottom).

2. Motivations

Real-Time Programs. Figure 1 is an example of a real-time program P;. It is defined by a finite
automaton A (Figure 1, top) which is the control flow graph (CFG) of Py, and some continuous
and discrete instructions (bottom). The control flow graph A; accepts the regular language £(A;) =
i.tp.t].t2: the program starts in (control) location ¢ and is completed when ¢ (accepting location) is
reached. The program variables are x,y, z which are real numbers. This real-time program is the
specification of a stopwatch automaton with 2 clocks, x and z, and one stopwatch y. The variables are
updated according to the following rules:

e Each edge’s label defines a guard g (a condition on the variables) for which the edge is enabled,
and an update v which is an assignment to the variables when the edge is taken. For instance
the edge ¢; can be taken when the valuation of the variable x is 1 and when it is taken, x is reset.
This corresponds to a discrete transition of the program.

e Each location is associated with a rate vector r that defines the derivatives of the variables. The
default derivative for a variable is 1 (we omit the rates for z, z in the Figure). For instance in
location £ the derivatives are (1,0, 1) (order is x, y, z). When the program is in location ¢ the
variables x, y, z increase at a rate defined by their respective derivatives: x, z increase by 1 each
time unit, and y is frozen (derivative is 0). This corresponds to a continuous transition of the

program.
A sequence of program instructions w = ag.ay.- - .ay, € L(A1) defines a (possibly empty) set
of timed words, T(w), of the form (ag, dp). -+ (an,) where §; > 0,7 € [0..n] is the time elapsed

between two discrete transitions. For instance, the timed words associated with i.t(.t9 are of the form
(7,00)-(to, 01).(t2, 62), for all §; € R>p,7 € {0, 1,2} such that the following constraints (predicates

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 5

that define that each transition can be fired after §; time units) can be satisfied!:

To=Yo=20=00N6 >0 A True C

0=Yo=20=00/\00 > Lue (Co)
Time elapsing dp in ¢ Guard of 4

r1=y1=21=04+65AN01>0 A True C

1=Y1 =2 +0d1 A0 > (C1)
Update of 4 and time elapsing §1 in £o Guard of tg
To=T14+ 0 ANy =11 AN20=0+0 N0 >0 AN x0—1y2>1AN29<1 (C9)
Update of tg and ti;e elapsing d2 in £1 Guard of ¢

These constraints encode the following semantics: i is taken after §y time units and at that time x, y, z
are equal to dp and hence xg, yo, 29 are the values of the variables when location ¢; is entered. The
program remains in ¢y for 61 time units. When tg is taken after §; time units, the values of x, y, z is
given by x1,y1, z1. Finally the program remains - time units in ¢; and ¢, is taken to reach o which
is the end of the program. It follows that the program can execute i.ty.to (or in other words, i.tg.t2 is
feasible) if and only if we can find dg, d1, 42 such that Cy A C; A Cs is satisfiable. Hence the set of
timed words associated with 4.%g.to is not empty iff Cy A C1 A Cs is satisfiable.

Language Emptiness Problem. The timed language, T L(P), accepted by P; is the set of timed
words associated with all the (untimed) words w accepted by Ay i.e., TL(P1) = Uyera)T(w).

The language emptiness problem is a standard problem in Timed Automata theory [6] and is stated
as follows for real-time programs:

given a real-time program P, is 7 £(P) empty?

It is known that the emptiness problem is decidable for some classes of real-time programs like
Timed Automata [6], but undecidable for more expressive classes like Stopwatch Automata [9]. It is
usually possible to compute symbolic representations of sets of reachable valuations after a sequence
of transitions. However, to compute the set of reachable valuations we may need to explore an ar-
bitrary and unbounded number of sequences. Hence only semi-algorithms exist to compute the set
of reachable valuations. For instance, using PHAVER to compute the set of reachable valuations for
P; does not terminate (Table 1). To force termination, we can compute an over-approximation of
the set of reachable valuations. Computing an over-approximation is sound (if we declare an over-
approximation of a timed language to be empty the timed language is empty) but incomplete i.e., it
may result in false positives (we declare a timed language non empty whereas it is empty). This is
witnessed by the column “UPPAAL” in Table 1 where UPPAAL over-approximates sets of valuations in
the program P; using DBMs. After 7.tg, the over-approximationis 0 <y < 2 A0 < z < z (this is the
smallest DBMs that contains the actual set of valuations reachable after i.Zg). This over-approximation
intersects the guard x —y > 1 A 2z < 1 of ¢5 which enables ?5. Using this over-approximate set of val-
uations we would declare that /5 is reachable in P; but this is an artifact of the over—approximation.2
Neither UPPAAL nor PHAVER can prove that 7L(P;) = @.

"We assume the program starts in ¢ and all the variables are initially zero.
2UPPAAL terminates with the result “the language may not be empty”.

6 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

Table 1: Symbolic representation of reachable states after a sequence of instructions. UPPAAL con-
cludes that 7L(A1) # @ due to the over-approximation using DBMs. PHAVER does not terminate.

Sequence PHAVER UPPAAL

1.tg z=x—yN0<z<x 0<y<zxzA0<z<z

1.t0.11 z=x—y+1AN0<z<2<zx+1 0<z—z<1A0<Ly

i.to.(t1)? z=r—y+2N0<r<z—-1<2+1 1<z—2<2A0<y

i.to.(t1)3 z=r—y+3N0<r<z—-2<x+1 2<z—x2<3A0<y

ito.(t1)" z=z—-y+kAN0<z<z-k+1<z+1 k—1<z-2<kA0<y

Trace Abstraction Refinement for Real-Time Programs. The technique we introduce can discover
arbitrary abstractions and invariants that enable us to prove 7 L(P;) = &. Our method is a version
of the trace abstraction refinement (TAR) technique introduced in [3] and is depicted in Figure 2.

L:=L(CFG(P)) —— L := L\ InFeasible(w) +—— N
0
No, letw € L (w) el
Yes Yes

Ti(P) =5

Figure 2: Trace Abstraction Refinement Loop for Real-Time Programs

Let us first introduce how the trace abstraction refinement algorithm (Figure 2) operates on a real-time
program P:
1. the algorithm starts using the control flow graph of P, C FG(P), and initially L = L(CFG(P)).
2. if L = @ then T L(P) is empty and the algorithm terminates (green block).

3. otherwise, there is w € L. We check whether 7(w) is empty or not:

e If it is not empty then 7 L(P) is not empty and the algorithm terminates (red block).

e Otherwise, we can find? a regular language over the alphabet of C F'G(P), InFeasible(w),
that satisfies: 1) w € InFeasible(w) and 2) Vv € InFeasible(w), T L(v) = &. In the
next iteration of the algorithm, we look for a candidate trace in L \ InFeasible(w), i.e., we
refine the trace abstraction L by subtracting InFeasible(w) from it.

3How this language is built is defined in Section 4.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 7

Assume the algorithm terminates after k iterations. In this case we were able to build a finite number
of regular languages L1 = InFeasible(w1), Ly = InFeasible(ws),- - , Ly = InFeasible(wy) such
that V1 < i < k, TL(L;) = @. If we terminate with 7L(P) = @ then L(CFG(P)) C UF_ | L;.
Otherwise if we terminate with 7(wy 1) # @ we found a witness trace wy 1 € L(CFG(P))\Ur_, L;
such that 7(wg41) # @ i.e., a feasible timed trace.

Example 1: Stopwatch Automaton. We illustrate the algorithm using our program P;:

e we initially let L = L(CFG(Py)). Since wy = i.tg.ty € L(CFG(P;)) and thus wy € L the
check L = @ fails. We therefore check whether 7(w;) = @ which can be done by encoding the
corresponding set of timed traces as described by Equations (Cj)—(C5) and then check whether
Co AN Cq ACy s satisfiable (e.g., using an SMT-solver and the theory of Linear Real Arithmetic).
Cp A C1 A Cy is not satisfiable and this establishes 7(w;) = .

e from the proof that Cy A C1 A Cs is not satisfiable, we can obtain an inductive interpolant that
comprises of two predicates Iy, I; — one for each conjunction — over the variables z,y, z. An
example of an inductive interpolant4 islp =x <yand I} = x —y < 2. These predicates are
invariants of any timed word of the untimed word w1, and can be used to annotate the sequence
of transitions w; with pre- and post-conditions (Equation 1), which are Hoare triples of the form
{C}a{D}:

{True} ¢ {Ip} to {Ii} to {False} (1)

Atriple {C'} a { D} is valid if whenever we start in a state s satisfying C, and execute instruction
a, the resulting new state s’ is in D. {C'} a { False} means that no state exists after executing a
from C), i.e., the trace a is infeasible. The inductiveness of the interpolants is due to the fact that
each triple {C'} a {D} in the sequence (1) is a valid Hoare triple. Hoare triples (and validity)
generalise to sequences of instructions ¢ in the form {C'} o {D}.

Because we can also prove that {I;} (¢1)* {1} is a valid Hoare triple, if we combine this
fact with Equation 1 we obtain a regular set of traces annotated with pre/post-conditions as per
Equation 2.

{True} i {Ip} to {hL} (1)* {hLh} to {False} (2)

This implies that the regular set of traces i.to.(t1)*.t2 does not have any associated timed traces:
for each word w € i.ty.(t1)".t2, 7(w) = @ and as L(CFG(P1)) C i.to.(t1)*.t2 we can
conclude that 7L(A,) = @.

Example 2: Extended Timed Automaton. The following example (Figure 3) illustrates how exten-
sions of timed automata with constraints that mix discrete and real variables can be analyzed. The
real-time program Py (Figure 3) is given by the CFG (left) and the instructions® (right): it specifies a
timed automaton with 2 clocks x, y (real variables) and one integer variable 7.

This is an extended version of timed automata as the constraint y < ¢ mixes integer and real
variables (clocks) and this is not permitted in the standard definition of timed automata. Initially all the

“This is the pair returned by Z3 for Co A C1 A Co.
The rates table is omitted as all the variables are clocks with rate 1.

8 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

Discrete Instructions

Aa
fo Edge ‘ Guard ‘ Update
S ta
— N~ —) —& to z21)
t t1 True x:=0; 1 =1+ 1
to y <1 -

Figure 3: Real-time program P»: CFG A, of P» (left) with accepting location ¢ and its instructions
(right).

variables are set to 0. The objective is to prove that location ¢; is unreachable and thus that 7 L(P») =
&. Note that UPPAAL does allow this specification but is unable to prove that /1 is unreachable because
7 is unbounded.

Our method is able to discover invariants that mix integer and real variables and can prove that /;
is unreachable as follows:

1. the first iteration of the TAR algorithm starts with L = L(CFG(P,)). The check L = @ is
negative as w; = to.to € L. However every timed word in 7(w;) must satisfy the following
constraints that correspond to taking ¢ and then £o:

o =Yg =00 N0 >0ANig=0A zg>1 (C(/))
~ ——
Time elapsing dg in ¢ Guard of ¢
T1 =20+ 01 AY1=yo+ o ANi1=igNd1 >0 A y1 <14y (1)
—
Update of to and time elapsing 471 in 4o Guard of ¢

C{ N C1 is not satisfiable and hence T L(to.t2) = & and thus we can safely remove w; from L.
We can extract interpolants from the proof of unsatisfiability of C{j A C| and we establish the
following sequence of valid Hoare triples:

{r=y=i=0} to {x=yAzx>i} to {False} 3)
2. the second iteration of the TAR algorithm starts with an updated L = L(CFG(F2)) \ {w1}.

Again L is not empty and for instance wy = %g.t1.tp.t2 is in L. The encoding for checking the
emptiness of 7(wy) is:

o =Y =0 N0 >0Nig=0A zg>1 (C(/)/
~~ N——
Time elapsing dg in ¢ Guard of g
= Ay = SiANip=igNor > 0N T cy
T1 =20+ 01AYy1 =Y +01AN11 =1A01 = rue (&1
Update of ¢ and time elspsing 61 in o Guard of ¢
Lo =0+ Ayp=y1+ 0 Nis=i1+1AJH>0A 22 >1 (Cg)
~~ S~——
Time elapsing 2 in ¢ Guard of ¢
r3 =122+ 03 Ay3=y2+03Niz3 =12 Ad3 > 0A y3 <13 (C)
——

Time elapsing d3 in £g Guard of g

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 9

C{NCY NCY ACY is unsatisfiable and hence T L(to.t1.to.t2) = &. We can extract interpolants
from the proof of unsatisfiability and we establish the following sequence of valid Hoare triples.

{fe=y=i=0} to {y>i} tito {y=>i} to {False} “

As can be seen as {y > i} t1.top {y > i} holds we can generalize this sequence to an arbitrary
number of iterations of ¢¢.t1:

{r=y=i=0} to {y>i} (tto)* {y>i} to {False} (5)

which entails that 7L (to.(t1.to)T.t2) = @. This implies that we can remove tg.(t1.t9)".t2
from L.

3. observe that L = & in the next iteration of TAR as L(CFG(P2))\ ({to-t2}Uto.(t1.t0) T t2) = @
given that L(CFG(Py)) = to.(t1.t0)*.t2. We have thus proved that 7 L(P») = & as any word
of instructions in £(CFG(Pz)) induces an infeasible trace and the algorithm terminates.

In the rest of the paper, we provide a formal development of the methods we have introduced so far.

3. Real-time programs

Our approach is general enough and applicable to a wide range of timed systems called real-time
programs. As an example, timed, stopwatch, hybrid automata and time Petri nets are special cases of
real-time programs.

In this section we formally define real-time programs. Real-time programs specify the control
flow of instructions, just as standard imperative programs do. The instructions can update variables
by assigning new values to them. Each instruction has a semantics and together with the control flow
this precisely defines the semantics of real-time programs.

3.1. Notations

A finite automaton over an alphabet X is a tuple A = (Q,(, %, A, F') where @ is a finite set of
locations s.t. ¢ € @ is the initial location, ¥ is a finite alphabet of actions, A C (@ x ¥ x @) is a finite
transition relation, F' C @) is the set of accepting locations. A word w = «ag.«1.- -+ .« 1S a finite
sequence of letters from ¥; we let w[i] = «; be the i-th letter of w, |w| be the length of w which is
n+ 1. Let € be the empty word and |e| = 0, and let ¥* be the set of finite words over . The language,
L(A), accepted by A is defined in the usual manner as the set of words that can lead to F from ¢.

Let V be a finite set of real-valued variables. A valuation is a function v : V' — R. The set of
valuations is [V — R].

We denote by 5(V) the set of constraints (or Boolean predicates) over V' and given ¢ € 3(V),
we let Vars(p) be the set of unconstrained variables in ¢. Given a valuation, we let the truth value
of a constraint (Boolean predicate) ¢ be denoted by ¢(v) € { True, False}, and write v |= ¢ when

o(v) = True and let [o] = {v | v E ¢}.

10 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

An update p C [V — R] x [V — R] is a binary relation over valuations. Given an update x and a
set of valuations V, we let u(V) = {¢/ | 3v € V and (v,') € u}. We let U (V') be the set of updates
on the variables in V.

Similar to the update relation, we define a rate function p : V' — R (rates can be negative), i.e., a
function from a variable to a real number®. A rate is then a vector p € RY. Given a valuation v and a
timestep 0 € R>¢ the valuation v + (p, 9) is defined by: (v + (p,d))(v) = v(v) + p(v) x d forv € V.

3.2. Real-time instructions

Let ¥ = B(V) xU(V) x R(V') be a countable set of instructions — and intentionally also the alphabet
of the CFG. Each o € ¥ is a tuple (guard, update, rates) denoted by (Va, fta, o). Letv : V. — R
and v/ : V — R be two valuations. For each pair (v, d) € 3 x R>(we define the following transition

. a,d
relation ——:

1. v | 74 (guard of « is satisfied in v),
1
v 250 = {2 A st (1, 1) € pa (discrete update allowed by o) and
3. V' =v"+ (pa,d) (continuous update as defined by).

The semantics of a € ¥ is a mapping [o] : [V — R] — 2lV=Rl and for v € [V — R]
[a](v) = {36 > 0,v 9, v} (6)
It follows that:

Fact3.1. 36 > 0,v Y e e [a](v).

This mapping can be straightforwardly extended to sets of valuations K C [V — R] as follows:

[el(K) = | [o](»). 7

veK

3.3. Post operator

Let K be a set of valuations and w € X*. We inductively define the (strongest) post operator
Post(K, w) as follows:

Post(K,e) = K
Post(K, a.w) = Post([a](K),w)

The post operator extends to logical constraints ¢ € 3(V') by defining Post(¢, w) = Post([¢], w). In
the sequel, we assume that, when ¢ € 5(V), then [a]([¢]) is also definable as a constraint in 5(V).
This inductively implies that Post(¢, w) can also be expressed as a constraint in (V") for sequences
of instructions w € X*.

SWe can allow rates to be arbitrary terms but in this paper we restrict to deterministic rates or bounded intervals.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 11

3.4. Timed words and feasible words

A timed word (over alphabet Y0) is a finite sequence o = (g, dp).(a1,d1). - -+ .(an, 0y,) such that for
each 0 <7 <n,d; € R>pand oy € 2. The timed word o is feasible if and only if there exists a set of
valuations {vg, ..., Vn+1} C [V — R] such that:

a0,00 1,01 Otn 0
120} 141 12} ccr Up ———> Unt1-

We let Unt(o) = ap.aj.--- .ay be the untimed version of 0. We extend the notion feasible to an
untimed word w € ¥*: w is feasible iff w = Unt(o) for some feasible timed word o.

Lemma 3.2. An untimed word w € ¥* is feasible iff Post(True,w) # False.

Proof:
We prove this Lemma by induction on the length of w. The induction hypothesis is:

0,00 1,01 Otn 0
Vo 2 Vo o Uy —— Upy1 <= Vpt1 € Post({p}, ap.aq. -)

which is enough to prove the Lemma.

Base step. If w = ¢, then Post({1p}, €) = {w}.

0,00 1,61 0tnyOn an+176n+1

Inductive step. Assume 1 1 Vo -+ VUp —— Upyl ———— VUpg2. By
induction hypothesis, v,,11 € Post({vo}, ap.a1.- -+ .ap), and vy 49 € [ap41](Vn+1). By definition
of Post this implies that v, 1o € Post({ivp}, ap.a1. - .Qp.Qpy1). a

3.5. Real-time programs

The specification of a real-time program decouples the control (e.g., for Timed Automata, the lo-
cations) and the data (the clocks or integer variables). A real-time program is a pair P = (Ap, [])
where Ap is a finite automaton Ap = (Q,+, %, A, F) over the alphabet’ X, A defines the control-flow
graph of the program and [-] provides the semantics of each instruction.

A timed word o is accepted by P if and only if:
1. Unt(o) is accepted by Ap and,
2. o is feasible.

The timed language, T L(P), of a real-time program P is the set of timed words accepted by P,
i.e.,, 0 € TL(P)ifand only if Unt(c) € L(Ap) and o is feasible.

Remark 3.3. We do not assume any particular values initially for the variables of a real-time program
(the variables that appear in I). This is reflected by the definition of feasibility that only requires the
existence of valuations without containing the initial one 1y. When specifying a real-time program,
initial values can be explicitly set by regular instructions at the beginning of the program. This is
similar to standard programs where the first instructions can set the values of some variables.

Y. can be infinite but we require the control-flow graph A (transition relation) of Ap to be finite.

12 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

3.6. Timed language emptiness problem

The (timed) language emptiness problem asks the following:

Given a real-time program P, is 7 L(P) empty?
Theorem 3.4. 7 L(P) # @ iff 3w € L(Ap) such that Post(True,w) € False.

Proof:

TL(P) # @ iff there exists a feasible timed word o such that Unt(c) is accepted by Ap. This is
equivalent to the existence of a feasible word w € L(Ap), and by Lemma 3.2, feasibility of w is
equivalent to Post(True, w) € False. O

3.7. Useful classes of real-time programs

Timed Automata are a special case of real-time programs. The variables are called clocks. B(V) is
restricted to constraints on individual clocks or difference constraints generated by the grammar:

bi1,by ::= True | False | x —y Xk |z X k| by Abe (8)

where z,y € V, k € Q>pand X € {<, <, =, >, >}%. We note that wlog. we omit location invariants
as for the language emptiness problem, these can be implemented as guards. An update in o € U(V)
is defined by a set of clocks to be reset. Each pair (v, ') € u is such that v/(z) = v(z) or v/(z) = 0
for each € V. The valid rates are fixed to 1, and thus R(V) = {1}".

Stopwatch Automata can also be defined as a special case of real-time programs. As defined
in [8], Stopwatch Automata are Timed Automata extended with stopwatches which are clocks that can
be stopped. 5(V') and U(V') are the same as for Timed Automata but the set of valid rates is defined
by the functions of the form R(V) = {0,1}" (the clock rates can be either 0 or 1). An example of a
Stopwatch Automaton is given by the timed system A in Figure 1.

As there exists syntactic translations (preserving timed languages or reachability) that map hybrid
automata to stopwatch automata [8], and translations that map time Petri nets [26, 27] and exten-
sions [28, 29] thereof to timed automata, it follows that time Petri nets and hybrid automata are also
special cases of real-time programs. This shows that the method we present in the next section is
applicable to a wide range of timed systems. What is remarkable as well, is that it is not restricted to
timed systems that have a finite number of discrete states but can also accommodate infinite discrete
state spaces. For example, the real-time program P in Figure 3, page 8 has two clocks = and y and an
unbounded integer variable i. Even though ¢ is unbounded, our technique discovers the loop invariant
y > 4 of the ¢ and ¢y locations — an invariant is over a real-time clock y and the integer variable 4. It
allows us to prove that T L(P») = & as the guard of ¢5 never can be satisfied (y < 7).

8While difference constraints are strictly disallowed in most definitions of Timed Automata, the method we propose retain
its properties regardless of their presence.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 13

4. Trace abstraction refinement for real-time programs

In this section we give a formal description of a semi-algorithm to solve the language emptiness prob-
lem for real-time programs. The semi-algorithm is a version of the refinement of trace abstractions
(TAR) approach [3] for timed systems.

4.1. Refinement of trace abstraction for real-time programs

We have already introduced our algorithm in Figure 2, page 6. We now give a precise formulation
of the TAR semi-algorithm for real-time programs, in Algorithm 1. It is essentially the same as the
semi-algorithm as introduced in [3] — we therefore omit theorems of completeness and soundness as
these will be equivalent to the theorems in [3] and are proved in the exact same manner.

Algorithm 1: RTTAR - Trace Abstraction Refinement for Real-Time Programs
Input : A real-time program P = (Ap, [-]).
Result: (True, —) if TL(P) = @, and otherwise (False, w) if TL(P) # & withw € L(Ap) and
Post(True, w) € False — or non-termination.
Var : R: aregular language, initially R = &.
w: aword in L(Ap), initially w = €.
T': A finite automaton, initially empty.
1 while £L(Ap) Z Rdo
2 Letw € L(Ap) \ R;
3 if Post(True,w) € False then
/* w is feasible and w is a counter-example */

4 return (Fualse, w);
5 else
/* w is infeasible, compute an interpolant automaton based on w */
6 Let T = ITA(w);
/* Add T to refinement and continue */
7 Let R:= RUL(T);

8 return (True, —);

The input to the semi-algorithm TAR-RT is a real-time program P = (Ap, [-]). An invariant of
the semi-algorithm is that the refinement R, which is subtracted to the initial set of traces, is either
empty or containing infeasible traces only. In the coarsets, initial abstraction, all the words L(Ap) are
potentially feasible. In each iteration of the algorithm, we then chip away infeasible behaviour (via the
set R) of Ap, making the set difference £L(Ap) \ R move closer to the set of feasible traces, thereby
shrinking the overapproximation of feasible traces (L(Ap) \ R).

Initially the refinement R is the empty set. The semi-algorithm works as follows:

Step 1 line 1, check whether all the (untimed) traces in £(Ap) are in R. If this is the case, 7 L(P)
is empty and the semi-algorithm terminates (line 8). Otherwise (line 2), there is a sequence
w € L(Ap) \ R, goto Step 2;

14 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

Step 2 if w is feasible (line 3) i.e., there is a feasible timed word o such that Unt(c) = w, then
o € TL(P) and TL(P) # & and the semi-algorithm terminates (line 4). Otherwise w is not
feasible, goto Step 3;

Step 3 w is infeasible and given the reason for infeasibility we can construct (line 6) a finite in-
terpolant automaton, ITA(w), that accepts w and other words that are infeasible for the same
reason. How /TA(w) is computed is addressed in the sequel. The automaton ITA(w) is added
(line 7) to the previous refinement R and the semi-algorithm starts a new round at Step 1 (line 1).

In the next paragraphs we explain the main steps of the algorithms: how to check feasibility of a
sequence of instructions and how to build I7A(w).

4.2. Checking feasibility

Given a arbitrary word w € X*, we can check whether w is feasible by encoding the side-effects of
each instruction in w using linear arithmetic as demonstrated in Examples 1 and 2.

We now define a function Enc for constructing such a constraint-system characterizing the feasibil-
ity of a given trace. We first show how to encode the side-effects and feasibility of a single instruction
a € X. Recall that a = (v, p, p) where the three components are respectively the guard, the update,
and the rates. Assume that the variables® in o are X = {x1,z2,--- , 73 }. We can define the semantics
of o using the standard unprimed'® and primed variables (X’). We assume that the guard and the
updates can be defined by predicates and write o = (o(Z), u(Z, T'), p(T)) with:

e o(T) € B(X) is the guard of the instruction,
e (T, T') a set of constraints in (X U X’),
e p: X — Q defines the rates of the variables.

The effect of o from a valuation Z”, which is composed of 1) discrete step if the guard is true followed
by the updates leading to a new valuation 7, and 2) continuous step i.e., time elapsing 0, leading to a
new valuation Z, can be encoded as follows:

Enc(a,7",7,7,0) = o(@") Au@", Z)Y AT =7+ (p,6) N6 >0)

Let K (Z) be a set of valuations that can be defined as constraint in 3(X). It follows that [a] (K (Z))
is defined by:
36,2, 7' such that K(z") A Enc(a, 7", 7,7, 6) (10)
In other terms, [« (K (Z)) is not empty iff K (") A Enc(o, ", T, T, §) is satisfiable.
We can now define the encoding of a sequence of instructions w=ag.c 1. - - - . € X*. Given a set
of variables TV, we define the corresponding set of super-scripted variables W* = {w/,w € W,0 <

The union of the variables in -, x, p.
19 denotes the vector of variables {x1, T2, -, Zk}.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 15

j < k}. Instead of using z, ', 2" we use super-scripted variables Z¥ (and 7* for the intermediate
variables z’) to encode the side-effect of each instruction in the trace:

n
Enc(w) = /\ Enc(oy, 7,7, 71, 6%)
i=0

It is straighgforward to prove that the function Enc : ¥* — B(X"*1 U Y™ U {§}") constructs a
constraint-system characterizing exactly the feasibility of a word w:

Fact 4.1. For each w € ¥*, Post(True,w) ¢ False iff Enc(w) is satisfiable.

If the terms we build are in a logic supported by SMT-solvers (e.g., Linear Real Arithmetic) we can
automatically check satisfiability. If Enc(w) is satisfiable we can even collect some model which
provides witness values for the d;. Otherwise, if Enc(w) is unsatisfiable, there are some options to
collect some reasons for unsatisfiability: unsat cores or interpolants. The latter is discussed in the next
section.

An example of an encoding for the real-time program P; (Figure 1) and the sequence wy = i.%g.t2
is given by the predicates in Equation (Cp)—(C). Hence the sequence w; = i.tg.t2 is feasible iff
Enc(wy) = Cy A Cy A Cy is satisfiable. Using a SMT-solver, e.g., with Z3, we can confirm that
Enc(w1) is unsatisfiable. The interpolating!! solver Z3 can also generate a sequence of interpolants,
Ip=x<yand I} = x — y < z, that provide a general reason for unsatisfiability and satisfy:

{TT”LLB}) {I()} t() {Il} tg {False}.

We can use the interpolants to build interpolant automata as described in the next section.

4.3. Construction of interpolant automata
4.3.1. Inductive interpolant

When it is determined that a trace w is infeasible, we can easily discard such a single trace and continue
searching for a different one. However, the power of the TAR method is to generalize the infeasibility
of a single trace w into a family (regular set) of traces. This regular set of infeasible traces is computed
from a reason of infeasibility of w and is formally specified by an interpolant automaton, ITA(w). The
reason for infeasibility itself can be the predicates obtained by computing strongest post-conditions or
weakest-preconditions or anything in between but it must be an inductive interpolant'?.

Given a conjunctive formula f = Cy A - -- A Cyy, if f is unsatisfiable, an inductive interpolant is
a sequence of predicates I, ..., [n_1 s.t:

o True N Cy = I,

"The interpolating feature of Z3 has been phased out from version 4.6.x. However, there are alternative techniques to obtain
inductive interpolants e.g., using unsat cores [30].
12Strongest post-conditions and weakest pre-conditions can provide inductive interpolants

16 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

o I, 1 NC,, = PFualse,

e ForeachO <n<m—1, I, NCyny1 = I,41,and the variables in I,, appear in both C,, and
Ch1 ie., Vars(Iy,) C Vars(Cy) N Vars(Cp41).

If the predicates Cy, C, - - - , Cy,, encode the side effects of a sequence of instructions ag.cv1. - -+, Qum,
then one can intuitively think of each interpolant as a sufficient condition for infeasibility of the post-fix
of the trace and this can be represented by a sequence of valid Hoare triples of the form {C'} a {D}:

{True} oy {lo} o1 {Li} -+ {Lnm-1} am,m {False}

Consider the real-time program Ps of Figure 3 and the two infeasible untimed words w; = ¢.tg.t2 and
wg = i.ty.t1.1o.t2. Some inductive interpolants for w; and ws can be given by: Iy = yo > xg A (ko =
O),Il =y > k1 for w; andI(’) =1y > x0 A ko SO,I{ =y > 1Ak SO,Ié =y > ko + xo,
I} = y3 > ks + 1 for we. From the inductive interpolants one can obtain valid Hoare triples by
de-indexing the predicates in the inductive interpolants'3 as shown in Equations 11-12:

{True} ¢ {m(lp)} to {m(L1)} t2 {False} (11)
{True} i {x(I})} to {w(I})} t1 {w(IH)} to {m(I})} to {False} (12)

where 7(I};) is the same as I, where each indexed variable x; replaced by «. As can be seen in
Equation 12, the sequence contains two occurrences of ¢y: this suggests that a loop occurs in the
program, and this loop may be infeasible as well. Formally, because Post((1}),to) C I, any trace
of the form i.tg.t1.(to.t1)*.to.t2 is infeasible. This enables us to construct an interpolant automaton
ITA(w2) accepting the regular set of infeasible traces i.tg.t1.(to.t1)*.to.t2. Overall, because w is also
infeasible, the union of the languages accepted by ITA(w2) and ITA(w) is a set of infeasible traces as
defined by the finite automaton in Figure 4.

Figure 4: Interpolant automaton for L(ITA(w1)) U LITA(w2)).

Given w such that Enc(w) is unsatisfiable we can always find an inductive interpolant: the strongest
post-conditions Post(True,w[i]) or (the weakest pre-conditions from False) defines an inductive in-
terpolant. More generally, we have:

Lemma 4.2. Let w = ag.aq.- -+ .ap, € X% If Enc(w) = Cy A C1 A -+ A C,, is unsatisfiable and
Iy, -, I,—1 is an inductive interpolant for Enc(w), the following sequence of Hoare triples

{True} oy {r(ly)} o1 {n(l1)} - am-1 {7(lm-1)} am {False}

is valid.

B3This is a direct result of the encoding function Enc. The interpolants can only contain at most one version of each indexed
variables.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 17

Proof:

The proof follows from the encoding Enc(w) and the fact that each I}, is included in the weakest
pre-condition wp(False, gy 1.0y,) Which can be proved by induction using the property of inductive
interpolants. a

4.3.2. Interpolant automata

Let us formalize the interpolant-automata construction. Let w = ag.a1.--- .y, € X¥, Enc(w) =
Co A -+ A Cy, and assume Post(True,w) C False i.e., Enc(w) is unsatisfiable (Fact 4.1).

Let Iy, ... I,,—1 be an inductive interpolant for Cy A - -+ A C,,,. We can construct an interpolant
automaton for w, ITA(w) = (Q%, ¢y, X%, A", F) as follows:

e QY = {True, False,m(Iy), -+ ,m(Ln—1)}, (note that if two de-indexed interpolants are the
same they account for one state only),

o MV = {0(0,0(1, e 7am}7
o [= {Fulse},
o AY satisfies following conditions:

1. (True,ap, (1)) € AY,
2. (m(Lym—1), aum, False) € AY,
3. Va e ¥¥, V0 < k,j <m —1,if Post(w(I}),a) C 7(I;) then (7(Iy),a,m(1;)) € A™.

Notice that as Post(m(Iy), axt+1) € 7(Ik41) the word w itself is accepted by ITA(w) and ITA(w) is
never empty.

Theorem 4.3. (Interpolant Automata)
Let w be an infeasible word over P, then for all w’ € L(ITA(w)), w' is infeasible.

Proof:

This proof is essentially the same as the original one in [3]. The proof uses rule 3 in the construction
of ITA(w): every word accepted by ITA(w) goes through a sequence of states that form a sequence of
valid Hoare triples and end up in False. It follows that if w’ € ITA(w), Post(True,w’) C False. O

4.4. Union of interpolant automata

In the TAR algorithm we construct interpolant automata at each iteration and the current refinement R
is the union of the regular languages L£(ITA(wy,)) for each infeasible wy. The union can be computed
using standard automata-theoretic operations. This assumes that we somehow forget the predicates
associated with each state of an interpolant automaton.

In this section we introduce a new technique to re-use the information computed in each ITA (wy,)
and obtain larger refinements.

18 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

Let A = (@, qo, 2, A, F) be a finite automaton such that each ¢ € @ is a predicate in ¢(X). We
say that A is sound if the transition relation A satisfies: (I, «a, J) € A implies that [o](I) C J (or
Post(I,a) C J).

Let R = (QF, { True}, o, AR {False}) be a sound finite automaton that accepts only infeasible
traces. Let w € ¥* with w infeasible. The automaton ITA(w) = (QY,{True}, X", A", { False})
built as described in section 4.3 is sound. We can define an extended union, R & ITA(w) = (QF U
QY { True}, F U X, ARUITAW) [[yise}) of R and ITA(w) with:

ARITAW) = {(p o, p')} | I, ") € ARUAY s.tp C gand p' D ¢'}.
It is easy to see that L(R W ITA(w)) O L(R) U L(ITA(w)) but also:

Theorem 4.4. Let w’ € L(R W ITA(w)). Then Post(True,w’) C False.

Proof:
Each transition (p, o, p’) in R & ITA(w) corresponds to a valid Hoare triple. It is either in A® or A¥
and then is valid by construction or it is weaker than an established Hoare triple in AT or A, ad

This theorem allows us to use the W operator in Algorithm 1 instead of the standard union of reg-
ular languages. The advantage is that we re-use already established Hoare triples to build a larger
refinement at each iteration.

4.5. Feasibility beyond timed automata

Satisfiability can be checked with an SMT-solver (and decision procedures exist for useful theories). In
the case of timed automata and stopwatch automata, the feasibility of a trace can be encoded in linear
arithmetic. The corresponding theory, Linear Real Arithmetic (LRA) is decidable and supported by
most SMT-solvers. It is also possible to encode non-linear constraints (non-linear guards and assign-
ments). In the latter cases, the SMT-solver may not be able to provide an answer to the SAT problem
as non-linear theories are undecidable. However, we can still build on a semi-decision procedure of
the SMT-solver, and if it provides an answer, get the status of a trace (feasible or not).

4.6. Sufficient conditions for termination

Let us now construct a set of criteria on a real-time program P = ((Q,qo, %, A, F),[-]) s.t. our
proposed method is guaranteed to terminate.

Lemma 4.5. Termination The algorithm presented in Figure 2 terminates if the following three con-
ditions hold.

1. For any word o € 3*, then [o] is expressible within a decidable theory (supported by the
solver), and

2. the statespace of P has a finite representation, and

3. the solver used returns interpolants within the finite statespace representation.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 19

Proof:

First consider the algorithm presented in Figure 2, then we can initially state that for each iteration of
the loop R grows and thus the NFA representing R (A®) must also. As per the construction presented
in Section 4.4 we can observe that the transition-function of A will increase by at least one in each
iteration in Step 3. If not, the selection of o between step 1 and step 2 is surely violated or the
construction of ITA in step 3 is.

From Conditions 2 and 3 we have that the statespace is finitely representable and that these rep-
resentatives are used by the solver. Thus we know that the interpolant automata also has a finite set
of states as per the construction of Section 4.4. Together with the finiteness of the set of instructions,
this implies that the transition-function of the interpolant automata must also be finite. Hence, the
algorithm can (at most) introduce a transition between each pair of states with each instruction, but
must at least introduce a new one in every iteration. a

As this termination condition relies on the solver, it is heavily dependent on the construction of
the solver. However, if we consider the class of real-time programs captured by Timed Automata, we
know that condition 1 is satisfied (in fact it is Linear Real Arithmetic), condition 2 is satisfied via the
region-graph construction. This leaves the construction of a solver satisfying condition 3, which in
turn should be feasible already from condition 2, but is practically achievable for TA via extrapolation-
techniques and difference bound matrices (or for systems with only non-strict guards; timed-darts or
integer representatives).

5. Parameter synthesis for real-time programs

In this section we show how to use the trace abstraction refinement semi-algorithm presented in Sec-
tion 4 to synthesize good initial values for some of the program variables, and to check robustness of
timed automata. We first define the Maximal Safe Initial State problem and then show how to reduce
parameter synthesis and robustness to special cases of this problem.

5.1. Maximal safe initial set problem

Given a real-time program P, the objective is to determine a set of initial valuations I C [V — R]
such that, when we start the program in I, 7 £(P) is empty.

Given a constraint / € 5(V'), we define the corresponding assume instruction by: Assume(I) =
(1,1d,0). This instruction leaves all the variables unchanged (discrete update is the identity function
and the rate vector is 0) and this acts as a guard only.

Let P = (Q, qo, 2, A, F') be a real-time program and I € 3(V'). We define the real-time program
Assume(I).P = (Q,{c},X U {Assume(I)}, A U {(¢,Assume(I),qo)}, F).

The maximal safe initial state problem asks the following:

Given a real-time program P, find a maximal I € 3(V) s.t. T L(Assume(I).P) = .

20 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

5.2. Semi-algorithm for the maximal safe initial state problem

Let w € L(Assume(I).P) be a feasible word. It follows that Enc(w) must be satisfiable. We can
define the set of initial values for which Enc(w) is satisfiable by projecting away all the variables in
the encoding Enc(w) except the ones indexed by 0. Let Iy = 3(Vars(Enc(w)) \ X°).Enc(w) be the
resulting (existentially quantified) predicate and 7(Ip) be the corresponding constraint on the program
variables without indices. We let 3;(w) = 7 (). It follows that 3;(w) is the maximal set of valuations
for which w is feasible. Note that existential quantification for the theory of Linear Real Arithmetic
is within the theory via Fourier—Motzkin-elimination — hence the computation of 3;(w) by an SMT-
solver only needs support for Linear Real Arithmetic when P encodes a linear hybrid, stopwatch or
timed automaton.'#

The TAR-based semi-algorithm for the maximal safe initial state problem is presented in Figure 5.
The semi-algorithm in Figure 5 works as follows:

Leto € T L(Assume(I).P)

I := True

‘ No
1: TL(Assume(I).P) = @? & 2: [:=1A—3,;(Unt(o))

Yes

N

Maximal safe init is

Figure 5: Semi-algorithm Safelnit.

1. initially I = True
2. using the semi-algorithm 1, check whether 7 L(Assume(I).P) is empty
3. if so P does not accept any timed word when we start from [/];

4. Otherwise, there is a witness word o € T L(Assume(I).P), implying that I A Enc(Unt(o))
is satisfiable. It follows that 3;.Enc(Unt(c)) cannot be part of the maximal set. It is used to
strengthen [and repeating from step 2.

If the semi-algorithm terminates, it computes exactly the maximal set of values for which the
system is safe (1), captured formally by Theorem 5.1.

Theorem 5.1. If the semi-algorithm Safelnit terminates and outputs I, then:
1. TL(Assume(I).P) = & and

2. forany I' € B(V), T L(Assume(I').P) = & implies I’ C I.

!“This idea of using Fourier-Motzkin elimination has already been proposed [20] in the context of timed Petri nets.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 21

Proof:
The fact that 7 L(Assume(I).P) = & follows from termination.

The fact that I is maximal is an invariant of the semi-algorithm: at the beginning, I = True
and is clearly maximal. At each iteration, we may subtract a set of valuations K from the previously
computed 7, but these valuations are all such that 7 L(Assume(v).P) # @ forany v € K by definition
of existential quantification.

Hence every time a set of valuations is removed by strengthening I only unsafe initial valuations
are removed. It follows that if safelnit terminates, I is maximal. a

5.3. Parameter synthesis

Let P = (Q,qo, %, A, F) be a real-time program over a set of variables X U U such that: Yu €
UN(g,u,p) € A, (v,v) € p = v(u) = V/(u) and p(u) = 0. In words, variables in U are
constant variables. Note that they can appear in the guard g.

The parameter synthesis problem asks the following:
Given a real-time program P, find a maximal set I € 5(U) s.t. T L(Assume(I).P) = &.

The parameter synthesis problem is a special case of the maximal safe initial state problem. Indeed,
solving the maximal safe initial state problem allows us to find the maximal set of parameters such that
TL(P) = . Let I be a solution'” to the maximal safe initial state problem. Then 3(Vars(P) \ U).I
is a maximal set of parameter values such that 7L(P) = @.

5.4. Robustness checking

Another remarkable feature of our technique is that it can readily be used to check robustness of real-
time programs and hence timed automata. In essence, checking robustness amounts to enlarging the
guards of a real-time program P by an € > 0. The resulting program is P;.

The robustness problem asks the following:
Given a real-time program P, is there some € > 0, s.t. TL(P.) = @.

Using our method we can solve the robustness synthesis problem which asks the following:
Given a real-time program P, find a maximal € > 0, s.t. TL(P.) = &.

This problem asks for a witness (maximal) value for €.
The robustness synthesis is a special case of the parameter synthesis problem where € is a param-
eter of the program P.

Note that in our experiments (next section), we assume that P is robust and in this case we can
compute a maximal value for e. Proving that a program is non-robust requires proving feasibility of in-
finite traces for ever decreasing e. We have developed some techniques (similar to proving termination
for standard programs) to do so but this is still under development.

'SFor now assume there is a unique maximal solution.

22 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

6. Experiments

We have conducted three sets of experiments, each testing the applicability of our proposed method
(denoted by RTTAR) compared to state-of-the-art tools with specialized data-structures and algorithms
for the given setting. All experiments were conducted on AMD EPYC 7551 Processors and limited to
1 hour of computation. The RTTAR tool uses the UPPAAL parsing-library, but relies on Z3 [31] for the
interpolant computation. Our experimental setup is available online [32].

6.1. Verification of timed and stopwatch automata

The real-time programs, P; of Figure 1 and P» of Figure 3 can be analyzed with our technique. The
analysis (RTTAR algorithm 1) terminates in two iterations for the program P, a stopwatch automaton.
As emphasized in the introduction, neither UPPAAL (over-approximation with DBMs) nor PHAVER
can provide the correct answer to the reachability problem for P;.

To prove that location 2 is unreachable in program P, requires to discover an invariant that mixes
integers (discrete part of the state) and clocks (continuous part). Our technique successfully discovers
the program invariants. As a result the refinement depicted in Figure 4 is constructed and as it contains
L(Ap,) the refinement algorithm RTTAR terminates and proves that 2 is not reachable. Ap, can only
be analyzed in UPPAAL with significant computational effort and bounded integers.

6.2. Parametric stopwatch automata

We compare the RTTAR tool to IMITATOR [25] — the state-of-the-art parameter synthesis tool for
reachability'®. We shall here use the semi-algorithm presented in Section 5 For the test-cases we use
the gadget presented initially in Figure 1, a few of the test-cases used in [33], as well as two modified
versions of Fischers Protocol, shown in Figure 6. In the first version we replace the constants in the
model with parameters. In the second version (marked by robust), we wish to compute an expression,
that given an arbitrary upper and lower bound yields the robustness of the system — in the same style
as the experiments presented in Section 6.3, but here for arbitrary guard-values.

As illustrated by Table 2 the performance of RTTAR is slower than IMITATOR when IMITATOR
is able to compute the results. On the other hand, when using IMITATOR to verify our motivating
example from Figure 1, we observe that IMITATOR never terminates, due to the divergence of the
polyhedra-computation. This is the effect illustrated in Table 1.

When trying to synthesize the parameters for Fischers algorithm, in all cases, IMITATOR times out
and never computes a result. For both two and four processes in Fischers algorithm, our tool detects
that the system is safe if and only ifa <0V b <0V b —a > 0. Notice thata < 0V b < 0 is a trivial
constraint preventing the system from doing anything. The constraint b —a > 0 is the only useful one.
Our technique provides a formal proof that the algorithm is correct for b — a > 0.

In the same manner, our technique can compute the most general constraint ensuring that Fischers
algorithm is robust. The result of RTTAR algorithm is that the system is robust iff

*We compare with the EFSynth-algorithm in the IMITATOR tool as this yielded the lowest computation time in the two
terminating instances.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 23

e<0Va<0Vb<OVb—a—2e>0- which for ¢ = 0 (modulo the initial non-zero constraint
on €) reduces to the constraint-system obtained in the non-robust case.

Table 2: Results for parameter-synthesis comparing RTTAR with IMITATOR. Time is given in seconds.
DNF marks that the tool did not complete the computation within an hour.

IMITATOR-2.12 RTTAR
Al DNF 0.08
Sched2.100.0 7.16 492.73
Sched2.50.0 4.95 273.36
fischer 2 DNF 0.26
fischer_2 robust DNF 0.25
fischer 4 DNF 47.96
fischer_4 robust DNF 50.26

Figure 6: A UPPAAL template for a single process in Fischers Algorithm. The variables e, a and b are
parameters for €, lower and upper bounds for clock-values respectively.

6.3. Robustness of timed automata

To address the robustness problem for a real-time program P, we use the semi-algorithm presented
in Section 5 and reduce the robustness-checking problem to that of parameter-synthesis. Notice the
delimitation of the input-problems to robust-only instances from Section 5.4.

As Table 3 demonstrates, SYMROB [24] and RTTAR do not always agree on the results. Notably,
since the TA M3 contains strict guards, SYMROB is unable to compute the robustness of it. Further-
more, SYMROB under-approximates ¢, an artifact of the so-called “loop-acceleration”-technique and
the polyhedra-based algorithm. This can be observed in the modified model M3c, which is now ana-
lyzable by SYMROB, but differs in results compared to RTTAR. This is the same case with the model
denoted a. We experimented with e-values to confirm that M3 is safe for all the values tested — while

24 F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

Table 3: Results for robustness analysis comparing RTTAR with SYMROB. Time is given in seconds.
N/A indicates that SYMROB was unable to compute the robustness for the given model.

RTTAR_ROBUST SYMROB
csma_05 3238 1/3 0.51 1/3
csma_06 87.55 1/3 1.91 1/3
csma_07 29430 1/3 7.37 1/3
fischer_ 04 17.64 1/2 0.19 1/2
fischer_05 102.50 1/2 0.77 1/2
fischer_ 06 519.41 1/2 2.83 1/2
M3 17.14 0 N/A N/A
M3c 17.72 9] 3.91 250/3
a 3470.95 1/2 19.66 1/4

a is safe only for values tested respecting € < % We can also see that our proposed method is signifi-
cantly slower than the special-purpose algorithms deployed by SYMROB, but in contrast to SYMROB,
it computes the maximal set of good paramaters.

7. Conclusion

We have proposed a version of the trace abstraction refinement approach to real-time programs. We
have demonstrated that our semi-algorithm can be used to solve the reachability problem for instances
which are not solvable by state-of-the-art analysis tools.

Our algorithms can handle the general class of real-time programs that comprises of classical
models for real-time systems including timed automata, stopwatch automata, hybrid automata and
time(d) Petri nets.

As demonstrated in Section 6, our tool is capable of solving instances of reachability problems
problems, robustness, parameter synthesis, that current tools are incapable of handling.

For future work we would like to improve the scalability of the proposed method, utilizing well
known techniques such as extrapolations, partial order reduction [34] and compositional verifica-
tion [35]. Another short-term improvement is to use unsat cores to compute interpolant automata
as proposed in [30]. Furthermore, we would like to extend our approach from reachability to more
expressive temporal logics.

Acknowledgments. The research was partially funded by Innovation Fund Denmark center DiCyPS
and ERC Advanced Grant LASSO. Furthermore, these results was made possible by an external stay
partially funded by Otto Mgnsted Fonden.

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 25

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

Cassez F, Jensen PG, Guldstrand Larsen K. Refinement of Trace Abstraction for Real-Time Programs.
In: Hague M, Potapov I (eds.), Reachability Problems. Springer International Publishing, Cham, 2017 pp.
42-58. ISBN: 978-3-319-67089-8.

Clarke EM, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-Guided Abstraction Refinement. In:
Emerson EA, Sistla AP (eds.), Computer Aided Verification, 12th International Conference, CAV 2000,
Chicago, IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer Science.
Springer. ISBN: 3-540-67770-4, 2000 pp. 154-169. doi:10.1007/10722167\ _15.

Heizmann M, Hoenicke J, Podelski A. Refinement of Trace Abstraction. In: Palsberg J, Su Z (eds.),
Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009.
Proceedings, volume 5673 of Lecture Notes in Computer Science. Springer. ISBN: 978-3-642-03236-3,
2009 pp. 69-85. doi:10.1007/978-3-642-03237-0\ 7.

Heizmann M, Hoenicke J, Podelski A. Software Model Checking for People Who Love Automata. In:
Sharygina N, Veith H (eds.), CAV, volume 8044 of LNCS. Springer, 2013 pp. 36-52. ISBN: 978-3-642-
39798-1.

Beyer D, Huisman M, Kordon F, Steffen B (eds.). Tools and Algorithms for the Construction and Analysis
of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic,
April 6-11, 2019, Proceedings, Part III, volume 11429 of Lecture Notes in Computer Science. Springer,
2019. ISBN: 978-3-030-17501-6. doi:10.1007/978-3-030-17502-3.

Alur R, Dill DL. A Theory of Timed Automata. Theor. Comput. Sci., 1994. 126(2):183-235. doi:
10.1016/0304-3975(94)90010-8.

Behrmann G, David A, Larsen K, Hakansson J, Petterson P, Yi W, Hendriks M. UPPAAL 4.0. In:
QEST’06. 2006 pp. 125-126. doi:10.1109/QEST.2006.59.

Cassez F, Larsen KG. The Impressive Power of Stopwatches. In: Palamidessi C (ed.), CONCUR 2000
- Concurrency Theory, 11th International Conference, University Park, PA, USA, August 22-25, 2000,
Proceedings, volume 1877 of Lecture Notes in Computer Science. Springer, 2000 pp. 138-152. doi:
10.1007/3-540-44618-4_12.

Henzinger TA, Kopke PW, Puri A, Varaiya P. What’s Decidable about Hybrid Automata? Journal of
Computer and System Sciences, 1998. 57(1):94 — 124. doi:http://dx.doi.org/10.1006/jcss.1998.1581.

Frehse G. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In: Morari M, Thiele L
(eds.), Hybrid Systems: Computation and Control, volume 3414 of Lecture Notes in Computer Science, pp.
258-273. Springer Berlin Heidelberg. ISBN: 978-3-540-25108-8, 2005. doi:10.1007/978-3-540-31954-2_
17.

Frehse G, Le Guernic C, Donzé A, Cotton S, Ray R, Lebeltel O, Ripado R, Girard A, Dang T, Maler O.
SpaceEx: Scalable Verification of Hybrid Systems. In: Gopalakrishnan G, Qadeer S (eds.), Computer
Aided Verification, volume 6806 of Lecture Notes in Computer Science, pp. 379-395. Springer Berlin
Heidelberg. ISBN: 978-3-642-22109-5, 2011. doi:10.1007/978-3-642-22110-1_30.

Henzinger TA, Ho PH, Wong-toi H. HyTech: A Model Checker for Hybrid Systems. Software Tools for
Technology Transfer, 1997. 1:460-463.

26

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction

Wang W, Jiao L. Trace Abstraction Refinement for Timed Automata. In: Cassez F, Raskin J (eds.), Au-
tomated Technology for Verification and Analysis - 12th International Symposium, ATVA 2014, Sydney,
NSW, Australia, November 3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer Science.
Springer. ISBN: 978-3-319-11935-9, 2014 pp. 396-410. doi:10.1007/978-3-319-11936-6\ _28.

Alur R, Dang T, Ivanci¢ F. Reachability Analysis of Hybrid Systems via Predicate Abstraction. In: Tomlin
ClJ, Greenstreet MR (eds.), Hybrid Systems: Computation and Control. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002 pp. 35-48.

Dierks H, Kupferschmid S, Larsen KG. Automatic abstraction refinement for timed automata. In: Inter-
national Conference on Formal Modeling and Analysis of Timed Systems. Springer, 2007 pp. 114—129.

Frehse G, Jha SK, Krogh BH. A Counterexample-Guided Approach to Parameter Synthesis for Linear
Hybrid Automata. In: Egerstedt M, Mishra B (eds.), Hybrid Systems: Computation and Control. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008 pp. 187-200.

Tiwari A. Abstractions for hybrid systems. Formal Methods in System Design, 2008. 32(1):57-83.
doi:10.1007/s10703-007-0044-3.

Bradley AR. SAT-Based Model Checking without Unrolling. In: Jhala R, Schmidt D (eds.), Verification,
Model Checking, and Abstract Interpretation. Springer Berlin Heidelberg, Berlin, Heidelberg. 2011 pp.
70-87. ISBN: 978-3-642-18275-4.

Bozzano M, Cimatti A, Griggio A, Mattarei C. Efficient Anytime Techniques for Model-Based Safety
Analysis. In: Kroening D, Pasdreanu CS (eds.), Computer Aided Verification. Springer International
Publishing, Cham. 2015 pp. 603-621. ISBN: 978-3-319-21690-4.

Bérard B, Fribourg L. Reachability Analysis of (Timed) Petri Nets Using Real Arithmetic. In: Baeten
JCM, Mauw S (eds.), CONCUR’99 Concurrency Theory. Springer Berlin Heidelberg, Berlin, Heidelberg.
1999 pp. 178-193. ISBN: 978-3-540-48320-5.

Cimatti A, Griggio A, Mover S, Tonetta S. Parameter synthesis with IC3. In: 2013 Formal Methods in
Computer-Aided Design. 2013 pp. 165-168. doi:10.1109/FMCAD.2013.6679406.

Kafle B, Gallagher JP, Gange G, Schachte P, Sgndergaard H, Stuckey PJ. An iterative approach to pre-
condition inference using constrained Horn clauses. CoRR, 2018. abs/1804.05989. 1804.05989, URL
http://arxiv.org/abs/1804.05989.

Kordy P, Langerak R, Mauw S, Polderman JW. A Symbolic Algorithm for the Analysis of Robust Timed
Automata. In: Jones CB, Pihlajasaari P, Sun J (eds.), FM 2014: Formal Methods - 19th International Sym-
posium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer Science.
Springer. ISBN: 978-3-319-06409-3, 2014 pp. 351-366. doi:10.1007/978-3-319-06410-9\ -25.

Sankur O. Symbolic Quantitative Robustness Analysis of Timed Automata. In: Baier C, Tinelli C
(eds.), Tools and Algorithms for the Construction and Analysis of Systems - 21st International Confer-
ence, TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9035 of Lecture Notes in Computer
Science. Springer. ISBN: 978-3-662-46680-3, 2015 pp. 484-498. doi:10.1007/978-3-662-46681-0\ -48.

André E, Fribourg L, Kiihne U, Soulat R. IMITATOR 2.5: A Tool for Analyzing Robustness in Scheduling
Problems. In: Giannakopoulou D, Méry D (eds.), FM 2012: Formal Methods: 18th International Sym-
posium, Paris, France, August 27-31, 2012. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg.
ISBN: 978-3-642-32759-9, 2012 pp. 33-36. doi:10.1007/978-3-642-32759-9_6.

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

F. Cassez et al. | Analysis of Real-Time Programs using Refinement of Trace Abstraction 27

Bérard B, Cassez F, Haddad S, Lime D, Roux OH. Comparison of the Expressiveness of Timed Automata
and Time Petri Nets. In: Pettersson P, Yi W (eds.), Formal Modeling and Analysis of Timed Systems, Third
International Conference, FORMATS 2005, Uppsala, Sweden, September 26-28, 2005, Proceedings, vol-
ume 3829 of Lecture Notes in Computer Science. Springer, 2005 pp. 211-225. doi:10.1007/11603009_17.

Cassez F, Roux OH. Structural Translation from Time Petri Nets to Timed Automata. Journal of Software
and Systems, 2006. 79(10):1456-1468.

Bérard B, Cassez F, Haddad S, Lime D, Roux OH. The expressive power of time Petri nets. Theoretical
Computer Science, 2013. 474:1-20. doi:http://dx.doi.org/10.1016/j.tcs.2012.12.005.

Byg J, Jacobsen M, Jacobsen L, Jgrgensen K, Mgller M, Srba J. TCTL-Preserving Translations from
Timed-Arc Petri Nets to Networks of Timed Automata. 7CS, 2013. doi:10.1016/j.tcs.2013.07.011.

Dietsch D, Heizmann M, Musa B, Nutz A, Podelski A. Craig vs. Newton in software model checking.
In: Bodden E, Schifer W, van Deursen A, Zisman A (eds.), Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017.
ACM. ISBN: 978-1-4503-5105-8, 2017 pp. 487-497. doi:10.1145/3106237.3106307.

De Moura L, Bjgrner N. Z3: An Efficient SMT Solver. In: Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08. Springer-Verlag, Berlin, Heidelberg. ISBN: 3-540-78799-2, 978-3-540-
78799-0, 2008 pp. 337-340. URL http://dl.acm.org/citation.cfm?id=1792734.1792766.

Jensen PG, Cassez F, Larsen KG. Repeatability for ”Verification and Parameter Synthesis for Real-Time
Programs using Refinement of Trace Abstraction”, 2020. doi:10.5281/zenodo.3952856.

André E, Lipari G, Nguyen HG, Sun Y. Reachability Preservation Based Parameter Synthesis for Timed
Automata. In: Havelund K, Holzmann G, Joshi R (eds.), NASA Formal Methods: 7th International
Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings. Springer International
Publishing, Cham. ISBN: 978-3-319-17524-9, 2015 pp. 50-65. doi:10.1007/978-3-319-17524-9_5.

Cassez F, Ziegler F. Verification of Concurrent Programs Using Trace Abstraction Refinement. In: Davis
M, Fehnker A, Mclver A, Voronkov A (eds.), Logic for Programming, Artificial Intelligence, and Rea-
soning - 20th International Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings,
volume 9450 of Lecture Notes in Computer Science. Springer. ISBN: 978-3-662-48898-0, 2015 pp. 233-
248. doi:10.1007/978-3-662-48899-7 _17.

Cassez F, Miiller C, Burnett K. Summary-Based Inter-Procedural Analysis via Modular Trace Refinement.
In: Raman V, Suresh SP (eds.), 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India, volume 29 of
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN: 978-3-939897-77-4, 2014 pp. 545—
556. doi:10.4230/LIPIcs.FSTTCS.2014.545.

