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Abstract. We report our experience in the formal verification of the
reference implementation of the Beacon Chain. The Beacon Chain is
the backbone component of the new Proof-of-Stake Ethereum 2.0 net-
work: it is in charge of tracking information about the validators, their
stakes, their attestations (votes) and if some validators are found to be
dishonest, to slash them (they lose some of their stakes). The Beacon
Chain is mission-critical and any bug in it could compromise the whole
network. The Beacon Chain reference implementation developed by the
Ethereum Foundation is written in Python, and provides a detailed op-
erational description of the state machine each Beacon Chain’s network
participant (node) must implement. We have formally specified and ver-
ified the absence of runtime errors in (a large and critical part of) the
Beacon Chain reference implementation using the verification-friendly
language Dafny. During the course of this work, we have uncovered sev-
eral issues, proposed verified fixes. We have also synthesised functional
correctness specifications that enable us to provide guarantees beyond
runtime errors. Our software artefact with the code and proofs in Dafny
is available at https://github.com/ConsenSys/eth2.0-dafny.

1 Introduction

The Ethereum network is gradually transitioning to a more secure, scalable and
energy efficient Proof-of-Stake (PoS) consensus protocol, known as Ethereum
2.0 and based off GasperFFG [2]. The Proof-of-Stake discipline ensures that
participants who propose (and vote) for blocks are chosen with a frequency that
is proportional to their stakes. Another major feature of Ethereum 2.0 is sharding
which enables the main blockchain to split into a number of independent and
hopefully smaller and faster chains. The transition from the current Ethereum
1 to the final version of Ethereum 2.0 (Serenity) is planned over a number of
years and will be rolled out in a number of phases. The first phase, Phase 0, is
known as the Beacon Chain. It is the backbone component of Ethereum 2.0 as
it coordinates the whole network of stakers and shards.
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The Beacon Chain. The Beacon Chain (and its underlying protocol) is in
charge of enforcing consensus, among the nodes, called validators, participating
in the network, on the state of the system. The set of validators is dynamic: new
validators can register by staking some ETH (Ethereum crypto-currency). Once
registered, validators are eligible to participate and propose and vote for new
blocks (of transactions) to be appended to the blockchain. The Beacon Chain
shipped on December 1, 2020. At the time of writing (October 14, 2021), close
to 250, 000 validators have staked 7, 780, 000 ETH ($30 Billion USD). Consid-
ering the coordination role and the amount of assets managed by the Beacon
Chain, it is a mission-critical component of the Ethereum 2.0 ecosystem. The
Beacon Chain reference implementation developed by the Ethereum Foundation
is written in Python, and provides a detailed operational description of the state
machine each Beacon Chain’s network participant (node) must implement.

Our Contribution. Our contribution is many-fold:

– We have formally specified and verified the absence of runtime errors in (a
large and critical part of) the Beacon Chain reference implementation using
the verification-friendly language Dafny.

– During the course of this work, we have uncovered several issues, proposed
verified fixes, some of which have been integrated in the reference imple-
mentation, and others have resulted in sunstnatial improvements (accuracy,
readability) of the reference implementation.

– We have also manually synthesised functional correctness specifications that
enable us to provide guarantees beyond runtime errors.

– Our software artefact with the code and proofs in Dafny is publicly available
in our repository at https://github.com/ConsenSys/eth2.0-dafny .

Related Work. The Ethereum Foundation has supported several projects re-
lated to applying formal methods for the analysis of the Beacon Chain (and
other components). A foundational project3 was undertaken in 2019 by Run-
time Verification Inc. and provided a formal and executable semantics in the
K framework, to the reference implementation [1]. The semantics was validated
and the reference implementation could be tested which resulted in a first set of
recommendations and fixes to the reference implementation. Although it may be
possible to formally verify the Beacon Chain with the K-framework tools, to the
best of our knowledge it has not been done yet. Runtime Verification Inc. have
also formally specified and verified (in Coq [11]) the underlying GasperFFG [2]
protocol. Our work complements these formal verification projects. Indeed, our
objective is to provide guarantees for the absence of bugs (runtime errors), and
loop termination which goes beyond testing. We have chosen to use a verification-
friendly programming language, Dafny [10], as it enables us to write the code in
a more developer-friendly manner (compared to K). However, we have used the
code bases from the previous projects to guide us (e.g., semantics) during the
course of this project.

3 https://github.com/runtimeverification/beacon-chain-spec
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2 The Beacon Chain Reference Implementation

In this section we introduce the system we want to formally verify, what are the
potential benefits and impacts of such of study, and we set out the goals of our
experiment.

2.1 System Description and Scope of the Study

As a robust decentralised system, the Beacon Chain aims to implement a repli-
cated state machine [9] that is fault-tolerant to a fraction of unreliable par-
ticipants (e.g., participants that can crash). The replicated state machine is
implemented with a number of networked identical state machines running con-
currently. This provides redundancy and a more reliable system. The state of
each machine changes on an occurrence of an event. As the machines operate
asynchronously, two different machines may receive different events that cannot
be totally ordered time-wise. This is why before processing an event and chang-
ing their states, the state machines run a consensus protocol to decide which
event they should all process next. The consensus protocol aims to guarantee
(under certain conditions) that an agreement will be reached which ensures that
events are processed in the same order on each machine.

2.2 The Beacon Chain Reference Implementation

The Beacon Chain (Phase 0) reference implementation [6] describes the state
machine that every Beacon node (participant) has to implement. The idea is
that anyone is allowed to be a participant in the decentralised Ethereum 2.0
ecosystem when it is fully deployed. However, as the consensus protocol is Proof-
of-Stake there must be a mechanism for participants to register and stake, to
slash a participant’s stake if they are caught4 misbehaving, i.e., not following the
consensus protocol, and to reward them if they are honest. The Beacon Chain
provides these mechanisms. It maintains records about the participants, called
validators, ensuring fairness (each honest participant should have a voting power,
for new blocks, related to its stake), and safety (a dishonest participant may be
slashed and lose part of their stakes).

The full Beacon Chain (Phase 0) reference implementation [6] comprises three
main sections:

1. the Beacon Chain State Transition describing the Beacon state machine
which is the most complex component;

2. The Simple SerialiZe (SSZ) library for how to encode/decode (serialise/de-
serialise) data that have to be communicated over the network;

3. the Merkleise library for how to build efficient encoding of data structures
into Merkle trees, and how to use them to verify Merkle proofs.

4 In a distributed system with potentially dishonest participants, it is not always
possible to detect who is dishonest (byzantine). However, sometimes a participant
can sometimes be proved to be dishonest.
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The State Transition. The Beacon Chain state transition part is the most
critical part and at the operational level the complexity stems from:

– time is logically divided into epochs, and each epoch into a fixed number of
slots; the state is updated at each slot;

– at the beginning of each epoch, disjoint subsets of validators are assigned to
each slot to participate in the block proposal for the slot and attest (vote)
for links in the chain;

– the state updates that apply at an epoch boundary are more complex than
the other updates;

– the actual state of the chain is a block-tree i.e., a tree of blocks, and the
canonical chain is defined as a particular branch in this tree. How this branch
is determined is defined by the fork choice rule.

– the fork choice rule relies on properties of nodes, justification and finalisa-
tion, in the block-tree. The state update describes how nodes in the block-
tree are deemed justified/finalised. The rules for justification and finalisation
are introduced in a separate document, the GasperFFG [2] protocol.

SSZ and Merkleise. These libraries are self-contained and independent from
the state transition. We used them as a feasibility study and we had verified
them before this project started. We have provided a complete Dafny reference
implementation for them in the merkle and ssz packages [3].

2.3 Motivation for Formal Verification

As mentioned previously, the Beacon Chain shipped on December 1, 2020 and up
to date, 250, 000 validators have staked 7, 780, 000 ETH ($30 Billion USD). It is
clear that any bug, or logical error, could have disastrous consequences resulting
is losses of assets for regular users, or downtimes and degradation of service, or
losses of rewards for the validators.

There are regular opportunities (forks) to update the code of Beacon Chain
nodes, so continuously running projects like ours is very valuable as what is
important is to find and fix bugs before attackers can exploit them. The op-
erational description of the Beacon Chain in the reference implementation is
provided in Python. It was written by several reference implementation writers
at the Ethereum Foundation and due to its size it is hard for one person to
have a complete picture of it. It is the reference for any Beacon Chain client
implementer. As a result, inaccuracies, ambiguities, or bugs in the reference im-
plementation will lead to erroneous and/or buggy clients that can compromise
the integrity, or the performance of the network. Moreover the reference imple-
mentation uses a defensive mechanism against unexpected errors:

(Rule 1) “State transitions that trigger an unhandled exception (e.g. a
failed assert or an out-of-range list access) are considered invalid. State
transitions that cause a uint64 overflow or underflow are also considered
invalid.” [6]



Formal Verification of the Beacon Chain 5

However this creates a risk that errors unrelated to the logic of the state tran-
sition function may introduce spurious exceptions. At the time of writing, there
are at least 4 different Ethereum 2.0 client softwares that are used by validators.
Bugs in the reference implementation may be handled differently in the various
clients, and in some cases lead to a split in the network5. The correctness of the
consensus mechanism is guaranteed for up to 1/3 of malicious nodes, that is,
nodes deviating from the reference implementation, be it intentionally or unin-
tentionally (e.g., because of a bug in the code). Hence, we should try to make
sure we reduce (buggy) unintentionally malicious nodes.

2.4 Objectives of the Study

Our goal is to improve the overall safety, readability and usability of the reference
implementation. Testing is of course an option, and Beacon Chain clients all
implement some form of testing. In this project we are interested in proving the
absence of bugs which goes beyond what testing techniques can do: testing can
show the presence of bugs but not their absence (Dijkstra, 1970).

The primary aspect of our project was to make sure that the code was
free of runtime errors (e.g., over/underflows, array-out-of-bounds, division-by-
zero, . . . ). This provides more confidence that when an exception occurs and
a state is left unchanged as per (Rule 1), the root cause is a genuine prob-
lem related to the state transition having been given an ill-formed block: if
state_transition(state,signed_block) triggers an exception, it should im-
ply that there is a problem with the signed_block not that some intermediate
computations resulted in runtime errors. A secondary goal was to try and synthe-
sise functional specifications from the reference implementation. This can help
developers to design tests, and contributes to the specifications being language-
agnostic. For instance, it can help write a client in a functional language which
results in a more inclusive ecosystem.

3 Formal Specification and Verification

In this section we present the challenges of the project, motivate our methodology
and conclude with our results’ breakdown.

3.1 Challenges

The main challenges in this formal verification project are in the verification of
the code of the state_transition component of the Beacon Chain. The SSZ
and Merkleise libraries are much smaller, simpler, and independent components
that can be dealt with separately.

The reference implementation for the Beacon Chain [6] introduces data types
and algorithms that should be interpreted as Python 3 code. As a result it may

5 A network split can be caused if some clients reject a chain that is being followed
by the other clients, which leads to a hard fork-like situation.
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not be straightforward for those who are not familiar with Python to under-
stand the meaning of some parts of the code. More importantly, the reference
implementation is not executable and may contain type mismatches, incompat-
ible function signatures, and bugs that can result in runtime errors like under-
overflows or array-out-of-bounds.

Listing A.1. The state transition function.

1 def state_transition(

2 state: BeaconState ,

3 signed_block: SignedBeaconBlock ,

4 validate_result: bool=True

5 ) -> None:

6 block = signed_block.message

7 # Process slots (including those with no blocks) since block

8 process_slots(state , block.slot)

9 # Verify signature

10 if validate_result:

11 assert verify_block_signature(state , signed_block)

12 # Process block

13 process_block(state , block)

14 # Verify state root

15 if validate_result:

16 assert block.state_root == hash_tree_root(state)

A typical function in the reference implementation is written as a sequence
of control blocks (including function calls) intertwined with checks in the form of
assert statements. The state_transition function (Listing A.1) is the com-
ponent that computes the update of the Beacon Chain’s state. The state (of
type BeaconState) records some information including the validators’ stakes,
the subsets of validators (committees) allocated to a given slot, and the hashes6

of the blocks that have already been added to the chain. A state update is
triggered when a (signed) block is added to Beacon Chain. The state machine
implicitly defined by the reference implementation generates sequences of states
of the form:

s0
b0−−→ s1

b1−−→ s2 . . .
bn−−−→ sn+1 . . . (StateT)

where s0 is given (initial values), b0 is the genesis block and for each i ≥ 1, si+1 =
state_transition(si, bi).

There are several challenges in testing or verifying this kind of code:

– the functions calls (lines 8, 13) mutate the input variable state; those func-
tions also call other functions that mutate the state.

– the semantics is not fully captured by the Python 3 interpretation because
of the defensive mechanism [S1] (Section 2.3, page 4).

– a valid state transition is the opposite of an invalid state transition (char-
acterised by [S1]). Determining when a computation is not going to trigger
runtime errors or failed asserts is non-trivial. This is due to the use of mu-
tating functions that can contain assert statements on values that are the
results of intermediate computations.

6 The actual blocks are recorded in the Store which is a separate data structure.
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– overall the code in the reference implementation does not explicitly define
what properties signed_block should satisfy to guarantee that executing the
function state_transition(state,signed_block) is not going to trigger
an exception. The implicit semantics of the code is: if an exception occurs
in executing state_transition with input signed_block, then this block
must be invalid (assuming state is always valid).
It follows that, if the code contains a bug that triggers a runtime error un-
related to signed_block (e.g., an intermediate computation that overflows,
or an array-out-of-bounds in a sorting algorithm), signed_block is declared
invalid and not added to the chain. To alleviate this problem, we have col-
lected the conditions (predicates) under which the addition of a block should
not fail, which clearly defines when a block is valid.

– as there is no reference functional specification it is not immediate to under-
stand when a block is invalid, and to write (unit) tests.

– finally the correctness of parts of the code rely on hidden assumptions,
e.g., the total amount of ETH is X so no overflow should happen.

The challenges pertaining to the SSZ and Merkleise libraries are more manage-
able. First, the reference implementation is shorter. Second, even if there is no
functional specification available, it is reasonably easy to synthesise them. Due to
the previous weaknesses, the reference implementation [6] has been the subject
of several informal explainers [15,5,6].

3.2 Methodologies

Resource Constraints. Resource-wise, the timeframe for our project was ap-
proximately 8 months (October 2020 to June 2021), with a team of two formal
verification researchers (first two co-authors) and one Beacon Chain expert re-
searcher (third co-author).

Verification Technique. The reference implementation is not the opera-
tional description of a distributed system, but rather a sequential state machine,
as per (StateT), Section 3.1. Thus, techniques and tools that are adequate for
the goals we set are related to program formal verification.

There are several techniques to approach program verification, ranging from
fully automated (e.g., static analysis/abstract interpretation [4], software model-
checking [8]) to interactive theorem proving [13]. Most static analysers are un-
sound (they cannot prove the absence of bugs) which disqualifies them for our
project. It is anticipated that fully automated verification techniques can be ef-
fective to detect runtime errors but may have limited applicability to proving
functional correctness.

On the other side of the spectrum, interactive theorem provers offer a com-
plete arsenal of logics/rules that can certainly be used for this kind of projects.
However they usually require encoding the software to be verified in a high-level
mathematical language that is rather different to a language like Python. The
level of expertise/experience required to properly use these tools is also high.
Overall this seemed incompatible with our available resources.
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A middle-ground between fully automated and interactive techniques is de-
ductive verification available in verification-friendly programming languages like
Dafny [10], Why3 [7], Viper [12] or Whiley [14]. Deductive verification lets veri-
fication engineers propose proofs and check them fully automatically.

We opted for Dafny [10], an award-winning verification-friendly language.
Dafny is actively maintained7 and under continuous improvement. It offers im-
perative/object oriented and functional programming styles. Moreover, some of
us had a previous exposure to Dafny (working on the SSZ/Merkleise libraries
early in 2020), and we could be fully operational quickly, and it was compatible
with our resources. We are convinced that similar results could be achieved with
Why3, Viper or Whiley but did not have the resources to launch concurrent
experiments.

Verification Strategy. Our strategy to write the Beacon Chain reference im-
plementation in Dafny and detect/fix runtime errors, and prove some functional
properties is three-fold:

1. Identify simplifications. The reference implementation is complex and
trying to encode it fully in Dafny may result in inessential details hindering
our verification progress. One example is the different data types (classes)
for Attestations. There are several variations of the type Attestations

and functions to convert between them. For our verification purposes, using
PendingAttestations instead of the fully fledged Attestations was ade-
quate. Another example is the abstraction of hashing functions. We assumed
an uninterpreted collision-free hash function as we did not aim to prove any
probabilistic properties involving this function.

2. Translate the reference implementation in Dafny. This helped the
formal verification researchers to familiarise themselves with the reference
implementation. During this phase, we focussed on adding pre and post con-
ditions to the functions of the reference implementation to guarantee the
absence of runtime errors. We were also able to prove some interesting invari-
ants: the data structure that contains the block-tree is indeed a well-formed
tree. This structure is implemented with links from nodes to their parent
(where null is a possible parent in the code). The invariant states that the
block-tree that is built with the state_transition function satisfies: i) the
set of ancestors of any block contain blocks with strictly smaller slot number
and is finite (no cycles) ii) the set of ancestors of any block in the block-tree
always contains the genesis block (with slot 0).

3. Synthesise functional specifications. In the last phase, we manually
synthesised functional specifications for each function in the reference im-
plementation. We proved that each function in the reference implementation
satisfied its functional specification. This enabled us to prove more complex
properties as we could do the formal reasoning and proofs on the functional
specifications and the results would carry over to the reference implemen-
tation. This was an effective solution to be able to prove properties of the

7 https://github.com/dafny-lang/dafny

https://github.com/dafny-lang/dafny
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reference implementation with lots of mutations (side-effects) without having
to embed them deep in the proofs.

3.3 Results

The complete code base is freely available in [3]. There are several resources
apart from the verified code: a Docker container to batch verify the code, and
some notes/videos to help navigate the Dafny specifications.

Coverage. We estimated that we have verified 85% of the reference imple-
mentation. The remaining 15% are simplifications e.g., data types, or using a
fixed set of validators instead of a dynamic set. Adding the remaining details
to the released version would require a substantial amount of work and at the
same time it seems that the likelihood of finding new issues is low. Since the
Beacon Chain has shipped in December 1, 2020, only a few minor issues have
been uncovered and promptly fixed which seems to confirm the previous claim.

Absence of Runtime Errors. All of the functions we have implemented
in Dafny are annotated with pre (requires) and post (ensures) conditions
that are verified, including loop termination. The Dafny version of function
state_transition is given in Listing A.2. Other functions are written simi-
larly e.g., process_slots and process_block. The Dafny verifier enforces the
absence of runtime errors like division by zero, under/overflows, array-out-of-
bounds. It follows that our code base is provably free of this kind of defect.
Moreover, additional checks can be added like the assert statement at line 28.
We have added all the assert statements from the reference implementation
and proved that they could not be violated. This requires adding suitable pre-
conditions.

Regarding loop termination proofs, most of the proofs are based on relatively
simple ranking functions. An example of a non-trivial proof termination can be
found in a functional correctness proof: the ancestors of a given block form a
strictly decreasing sequence, slot-wise, and consequently end up in the genesis
block. The corresponding code is in the Forkchoice.dfy file.

Functional Correctness. Beyond the absence of runtime errors, we have syn-
thesised functional specifications based off the reference implementation code.
For instance we have decomposed the state update in state_transition into
a sequence of simpler steps, updateBlock, forwardStateToSlot, nextSlot and
proved that the result is a composition of these functions. This provides more
confidence that the code is functionally correct as our decomposition specifies
smaller changes in the state. It also enables us to prove properties on the func-
tional specifications and transfer them to the imperative version of the code.

Impact of our Project. During the course of this projects we have reported
several issues, some of them bugs (3), some of them need for clarifications (5)
in the reference implementation. The issues we have uncovered are tracked in
the issues tracker of our github repository. Some of the bugs we reported have
been fixed and our clarifications category has led to several improvements in

https://github.com/ConsenSys/eth2.0-dafny/blob/4e41de2866c8d017ccf4aaf2154471ffa722b308/src/dafny/beacon/forkchoice/ForkChoice.dfy#L339
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the writing of the reference implementation. Moreover, we have provided a fully
documented version of the reference implementation in Dafny. The Dafny code
contains clear pre and post conditions that can help developers understand the
effect of a function and can be used to write unit tests.

Listing A.2. Dafny version of state transition

1 method state_transition(s:BeaconState ,b:BeaconBlock)

2 returns (s’: BeaconState)

3 // A valid state to start from

4 requires |s.validators| == |s.balances|

5 requires is_valid_state_epoch_attestations(s)

6 // b must a block compatible with s

7 requires isValidBlock(s, b)

8 // Functional correctness

9 ensures s’ ==

10 updateBlock(forwardStateToSlot(nextSlot(s),b.slot),b)

11 // Other post -conditions

12 ...

13 ensures s’.slot == b.slot

14 ensures s’. latest_block_header.parent_root ==

15 hash_tree_root(

16 forwardStateToSlot(nextSlot(s), b.slot)

17 .latest_block_header

18 )

19 ensures |s’. validators| == |s’. balances|

20 ...

21 {

22 // Finalise slots before b.slot.

23 s’ := process_slots(s, b.slot);

24
25 // Process block and compute the new state.

26 s’ := process_block(s’, b);

27
28 // Verify state root (from eth2.0 specs)

29 assert (b.state_root == hash_tree_root(s’));

30 }

Statistics. Table 1, page 11, provides some insights into the actual code,
per file. We have tried to keep the size of each file small and provide optimal
modularity in the proofs. The files in the packages fall into one of the three
categories: file.dfy is the Python-reference implementation translated into
Dafny; file.s.dfy contains the functional specifications we have synthesised
and file.p.dfy any additional proofs (Lemmas) that are used in the correct-
ness proofs. It is hard to estimate the lines of code to lines of proofs ratio for
many reasons: i) it is not always possible to locate all the proofs in a separate
unit (e.g. a module in Dafny), as this can create circular dependencies.

It follows that counting lines of proofs as lines in the Lemmas is not an
accurate measure; ii) in some of the proofs, we have, on purpose, provided re-
dundant hints. As a result some proofs can be shortened but this may be at the
expense of readability (and verification time). For this project, a conservative
(and empirical) lines of code to lines of proofs ratio seems to be around 1 to 7.
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Table 1. Statistics. A file providing functional specifications. A file providing proofs
(lemmas in Dafny). #LoC (resp. #DoC) is the number of lines of code (resp. docu-
mentation), Lem. the number of proper lemmas, Imp. the number of proved impera-
tive functions with pre/post conditions.

Files Package #LoC Lem. Imp. #Doc #Doc
#LoC (%) Proved

ActiveValidatorBounds.p.dfy beacon 52 3 0 29 56 3

BeaconChainTypes.dfy beacon 54 0 0 171 317 0

Helpers.dfy beacon 1003 9 89 670 67 98

Helpers.p.dfy beacon 136 13 0 114 84 13

Helpers.s.dfy beacon 136 9 6 67 49 15

AttestationsTypes.dfy beacon/attestations 30 0 0 68 227 0

ForkChoice.dfy beacon/forkchoice 229 3 15 172 75 18

ForkChoiceTypes.dfy beacon/forkchoice 9 0 0 17 189 0

Crypto.dfy beacon/helpers 7 0 1 3 43 1

EpochProcessing.dfy beacon/statetransition 384 0 14 127 33 14

EpochProcessing.s.dfy beacon/statetransition 398 24 0 336 84 24

ProcessOperations.dfy beacon/statetransition 361 0 11 119 33 11

ProcessOperations.p.dfy beacon/statetransition 160 10 0 74 46 10

ProcessOperations.s.dfy beacon/statetransition 410 12 6 137 33 18

StateTransition.dfy beacon/statetransition 215 0 8 126 59 8

StateTransition.s.dfy beacon/statetransition 213 11 1 100 47 12

Validators.dfy beacon/validators 11 0 0 53 482 0

Merkleise.dfy merkle 504 9 18 135 27 27

BitListSeDes.dfy ssz 262 7 3 64 24 10

BitVectorSeDes.dfy ssz 155 4 3 53 34 7

BoolSeDes.dfy ssz 22 0 2 3 14 2

BytesAndBits.dfy ssz 90 7 6 44 49 13

Constants.dfy ssz 104 0 0 36 35 0

IntSeDes.dfy ssz 130 2 2 20 15 4

Serialise.dfy ssz 514 3 5 36 7 8

DafTests.dfy utils 62 0 4 25 40 4

Eth2Types.dfy utils 227 1 3 77 34 4

Helpers.dfy utils 220 11 3 103 47 14

MathHelpers.dfy utils 293 18 6 105 36 24

NativeTypes.dfy utils 28 0 0 13 46 0

NonNativeTypes.dfy utils 8 0 0 6 75 0

SeqHelpers.dfy utils 69 8 2 58 84 10

SetHelpers.dfy utils 74 6 0 50 68 6

TOTAL 6570 170 208 3212 49 378
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4 Findings and Lessons Learned

During the course of our formal verification effort we found subtle bugs and also
proposed some clarifications for the reference implementations. In addition, our
work was the opportunity to start some discussions about how to improve the
readability of the reference implementation, e.g., by using pre and post conditions
rather than assert statements. In this section we provide more insights into
some of the main issues we reported8, and also on the practicality of this kind
of project.

4.1 Array-out-of-bounds Runtime Error

The function get_attesting_indices (Listing A.3) is called from within several
important components of the state transition function including the process-
ing of rewards and penalties, justification and finalisation, as well as the pro-
cessing of attestations (votes).

Listing A.3. Python code for get attesting indices.

1 def get_attesting_indices(

2 state: BeaconState ,

3 data: AttestationData ,

4 bits: Bitlist[MAX1]

5 ) -> Set[ValidatorIndex ]:

6 """

7 Return the set of attesting indices corresponding to

8 ‘‘data ‘‘ and ‘‘bits ‘‘.

9 """

10 committee=get_beacon_committee(state , data.slot , data.index)

11 return

12 # Collect indices in committee for which bits is set

13 set(index for i, index in enumerate(committee) if bits[i])

The last line (13) of get_attesting_indices collects the indices in the ar-
ray committee that have a corresponding bit set to true in array bits and
returns it as a set of indices. The length of bits, noted |bits|, is MAX1. Conse-
quently, the following relation must be satisfied to avoid an array-out-of-bounds
error: |committee| ≤ MAX1. It follows that to prove9 the absence of array-out-of-
bounds error in Dafny, the specification of get_attesting_indices (in Dafny)
requires a pre-condition, |get beacon committee(. . . )| ≤ MAX1 (line 10). This
pre-condition naturally imposes a post-condition for get_beacon_committee

and trying to prove this post-condition we uncovered a very subtle bug: de-
pending on the number of active validators V in state:

V ≤ 4,194,304: there is no array-out-of-bounds error as we can prove that
|get beacon committee(. . . )| ≤ MAX1 for all values of the input parameters
data.slot and data.index,

8 https://github.com/ConsenSys/eth2.0-dafny/issues
9 In Dafny, this check is built-in so you cannot avoid this proof.

https://github.com/ConsenSys/eth2.0-dafny/issues


Formal Verification of the Beacon Chain 13

4,194,304 < V < 4,196,352: there is at least one value of the input parame-
ters data.slot and data.index for which |get beacon committee(. . . )| >
MAX1, which results in an array-out-of-bounds, and

4,196,352 ≤ V: for all input combination of data.slot and data.index, there
is an array-out-of-bounds |get beacon committee(. . . )| > MAX1.

This previously undocumented bug was difficult to detect. It required many
hours of effort to model the dynamics of the problem; the analysis was quite
complex due to the multiple interrelated parameter calculations, as well as the
use of floored integer division. The full description and the analysis of this bug
has been reported as issue10 to the reference implementation github repository.
The issue was confirmed by the reference implementation writers.

4.2 Beyond Runtime Errors

We have also been able to establish some well-formedness properties of the data
structure that represents the block-tree built by each node. Each added block
has a stamp, the slot number and a link to its parent. The block-tree is the tree
representation of the parent relation. The block-tree should satisfy the following
properties:

– Every block b except the genesis block has a parent,
– Every block b with parent p is such that the slot of b is strictly larger than

the slot of p,
– the transitive closure of the parent relation produces chains of blocks that

are totally ordered using the < relation on slot,
– the smallest element of each chain has slot 0 (and consequently is the genesis

block).

We have established these properties in ForkChoice.dfy using a list of invariants
on the Store.

Another noticeable contribution compared to other approaches (like testing)
is that we have proved the termination of all loops. For the majority of the
loops, the ranking function used to prove termination is rather straightforward.
An example of a more complicated (decreasing) ranking function can be found
in the proof of a (functional correctness) lemma in ForkChoice.dfy : the proof
relies on the slot number of a block’s parent being strictly smaller than the slot
number of a block itself. The lemma establishes that the graph defined by the
parent relation on the blocks in the store, is always well-formed and is a (block-
)tree: the list of ancestors of any block in the store is ordered (slot-wise) and the
smallest element is the genesis block.

4.3 Finalisation and Justification

During the course of the project we benefited from the guidance of the third co-
author who has comprehensive expertise in various aspects of the Beacon Chain,

10 https://github.com/ethereum/consensus-specs/issues/2500

https://github.com/ConsenSys/eth2.0-dafny/blob/4e41de2866c8d017ccf4aaf2154471ffa722b308/src/dafny/beacon/forkchoice/ForkChoice.dfy#L203
https://github.com/ConsenSys/eth2.0-dafny/blob/4e41de2866c8d017ccf4aaf2154471ffa722b308/src/dafny/beacon/forkchoice/ForkChoice.dfy#L339
https://github.com/ethereum/consensus-specs/issues/2500
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including the fork choice part, and identified the fork choice implementation of
the reference implementation as a component that needed verification.

The fork choice rules are designed to identify a canonical branch in the block-
tree which in turn defines the canonical chain. To achieve this goal, we first as-
sumed a fixed set of validators. Then we built a Dafny proof of the GasperFFG [2]
protocol and tried to prove properties about the justified and finalised blocks in
the block-tree. We could mechanically prove Lemmas 4.11 and 5.1, Theorem 5.2
from [2]. Note that a complete proof in Coq is available in [11] but it does not
use the Beacon Chain data structures. We only managed to push these proper-
ties up to a certain level on the functional specifications of our code base and
not on the actual reference implementation. Doing so would require us to add
a substantial amount of details and to modify the structure of several proofs
which was not doable in our timeframe. This experimental work is archived in
branch goal1 of the repository. There is a currently ongoing work focussing on
this topic: designing the mechanised proofs11 of the refinement soundness of the
state transition function (Phase 0) w.r.t. the GasperFFG protocol.

4.4 Reflection

Verification Effort. The effort for formal verification took 16 person-months.
This figure is for the Beacon Chain State Transition and does not include the
time spent on the SSZ and Merkleise libraries that were completed before this
project started. The division of time was primarily between the second and
third components of the project. Translation of the reference implementation in
Dafny, took approximately 6 person-months12. Synthesis of functional specifica-
tions (manually), including proofs, took approximately 10 person-months. The
time allocation for the identification of simplifications is more difficult to assess.
Though some consideration was given initially, this aspect was ongoing, as our
understanding of the reference implementation evolved.

Trust Base. The validity of the verification results assumes the correctness
of the Dafny specification and the Z3 verifier. Dafny is actively maintained and
under continuous improvement. And in the rare instance where Dafny behaves
unpredictability, bug reports are responded to in a timely manner. During the
course of this project a few bugs were reported. For example it was found that
the definition of an inconsistent const could lead to unsound verification results
and reported as an issue13 (fixed) to the Dafny language github repository.

Practicality of the Approach. The use of Dafny does not require any spe-
cific knowledge beyond standard program verification (Hoare style proofs) and
first-order logics. There is ample support (videos, tutorials, books) to help learn-
ing how to write Dafny programs and proofs. The main difficulties/challenges
in writing and verifying projects of this size with Dafny (and the same holds for

11 https://github.com/runtimeverification/beacon-chain-verification
12 This translation includes the proof of absence of runtime errors.
13 https://github.com/dafny-lang/dafny/issues/922

https://github.com/runtimeverification/beacon-chain-verification
https://github.com/dafny-lang/dafny/issues/922
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other verification-friendly automated deductive verifiers) are: 1. when the veri-
fication fails, it requires some experience to interpret the verifier feedback and
make some progress, and 2. the unpredictability (time-wise) of the reasoning
engine; this is due to the fact that verification conditions that are generated by
Dafny are in semi-decidable theories of the underlying SMT-solver (Z3). In our
experience, adding a seemingly innocuous line of proof may result in either a
surge or a drastic reduction of verification time.

5 Conclusion

Overall this project was a significant undertaking. The complexity of the state
transition mechanism, combined with the ambitious project scope, makes this
one of the largest formal verification projects to be completed using Dafny. Even
with the model simplifications, the Python language is not particularly compat-
ible with the fundamentals that underpin formal verification, which presented
continual challenges. Upon reflection: i) the project would have benefited from a
larger team and ii) consideration of the application of formal verification meth-
ods earlier, ideally within the design process, would have had a positive impact.

The interest generated from this project provided an opportunity to facili-
tate Dafny training for the reference implementation writers at the Ethereum
Foundation. This training included the translation of code into Dafny, as well
as the more advanced topic of proof construction. Participants were able to gain
insight into the formal verification process which could provide valuable context
when drafting future reference implementations and specifications.
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