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Abstract—In this paper we extend the work ondynamic ob- Il. PRELIMINARIES
serversfor fault diagnosis [1], [2], [3] to timed automata. We .
study sensor minimization problems with static observers and > denotes afinite alphabet add = XU{7} wherer ¢ X
then address the problem of computing the most permissive is theunobservablection.B = {TRUE, FALSE} is the set of

dynamic observer for a system given by a timed automaton.  poolean valuesN the set of natural numberg, the set of
integers andQ the set of rational number® is the set of

I. INTRODUCTION ) .
) real numbers an® -, is the non-negative real numbers.
Discrete-event systems [4] (DES) can be modelled by =

finite automata over an alphabet of actions/eventsThe A Clock Constraints
fault diagnosis problem [5] for DES consists in detecting . .
Let X be a finite set of variables callezlocks A clock

faulty sequences in the system. faulty sequence is a luation . X — Rer. We letRX. be th
sequence of the DES containing an occurrence of a specY uationis a mapping : X — R>o. We letRs, be the set

event f. It is assumed that an externabserverwhich has of clock valuations oveX. We let0x be thezerovaluation
to detect faults, knows the specification/model of the DEéNh_ere Ia” t?e cl?r?ks m)t( azre g_et ‘;OO nge usg:(()j thn
but can partially observe the system at runtime: it is able ti IS clear_ rorg f c gog ex )‘5 |\{e _6 U 5 V?/noles
observe sequencesalservableevents in%, C 3. Based on . (}V&:)uat;]on e ";:e Yo +0)(z) = ggx) + " e etf
this knowledge, it has to announce whether an observatigr‘ .) e.t e seto Onvex constraintsn X, |.e.,.t eseto
(in =) stems from a faulty sequence ({iC U {7, f})*) conjunctions of constraints of the form< ¢ with ¢ € Z

Checking diagnosability of DES can be done in PTIME an(‘]mdI>4€ {<,<,=,>,2}. Given a constraing € C(X) and

: - o luationv, we writev = g if ¢ is satisfied byv. Given
computing a diagnoser amounts to determinizing the DE va . . . .
(EXPTIME) [5], [6], [7]. C X and a valuatiorv, v[R] is the valuation defined by

R = if R andv[R = 0 otherwise.
Fault Diagnosis for Timed AutomataThe fault diagnosis vlfl(z) =v(@) it = ¢ vIR)(z) W

problem for Timed Automata (TA) has been introduceds. Timed Words
and solved by S. Tripakis in [8], where he proved that h ¢ fini infini R
checking diagnosability of a timed automaton is PSPACE- The set of finite (resp. infinite) words ovaris X* (resp.

complete. In the timed case however, the diagnoser may g)é’)darlewe |etzoz n XU 2;' WeEI(isAt\)ef_ t_he empty
a Turing machine. In a subsequent work by P. Bouyer angCrd. A languagel is any su set_ oL inite (resp.
finite) timed wordoverX is a word in(R>¢.X)*.Rx>q (resp.

F. Chevalier [9], the problem of checking whether a time(%n ). D s the durai f a tmed & which
automaton is diagnosable using a diagnoser which is ‘a2 )). Dur(w) is the duration of a timed word) whic

deterministictimed automaton (DTA) was studied, and the))s defined to be the sum of the durations ®30) which

proved that this problem was 2EXPTIME-complete. appear inw; if_this sum _is _in_finite, the duration _i50. Note
o that the duration of an infinite word can be finite, and such
Our Contribution and Related WorkIn [1], [2] (and [3]

. ) . words which contain an infinite number of letters, are called
for an extended version), we have introduathamic ob- 5.0 qc

serversfor fault diagnosis of DES. In this framework, an TWH (%) is the set of finite timed words oval, TW (%)
observer can choose dynamically which events it is going tt(P.le set of infinite timed words an@W(X) — "I'W*(E) U

observe;I andbmake;\I new crtmllce fﬂe::’ eachhoccurrhence rc:f (2). A timed languagds any subset oTW(X).
(currently) observable event. In [1], [3] we have shown how In this paper we write timed words 8st a 1.052.7¢- - -

to compute (2EXPTIME) anost permissive observerhich where the real values are the durations elapsed between two

represents all the the dynamic observers that ensures thq flers: thus: occurs at global timd.1. We letUnt(w) be the
DES is diagnosable. In [2] we have furthermore introduce ntimedversion ofw obtained by erasing all the durations

abnotr|\c/>nrofco|3t01; anbobse;/er,t a;?npzr%\;?g_;lﬁéan optimay, w, €.9.,Unt(0.4 a 1.0 b 2.7 ¢) = abc. Given a timed
observer could aiso be compute ' languageL, we letUnt(L) = {Unt(w) | w € L}.

In this paper, we extend the previous results for systems Let 7/ be the projection of timed words JFW(Y)

%}ﬁg it:}y[fg;ed automata. Proofs are omitted and can boever timed words ofTW(X'). When projecting a timed

word w on a sub-alphabeE’ C X, the durations elap-
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C. Timed Automata a location of4 andr is aregionof R¥ . More generally, the

Timed automata (TA) are finite automata extended witgdges of the graph are tuplés ¢, s") wheres, s are states
real-valued clocks to specify timing constraints betweeff RG(4) and? € E’. Genuine unobservable moves of
occurrences of events. For a detailed presentation of thPelledr are labelled by tuples of the fonfs, (g, 7, 7). s')
fundamental results for timed automata, the reader is referr8RG(4). An edge(g, A, R) in the region graph corresponds
to the seminal paper of R. Alur and D. Dill [11]. to a discrete tran§|t|on ofl with guardg, action\ and reset

Definition 1 (Timed Automaton)A Timed Automatond ~ S€tR. A 7 move inRG(A) stands for a delay move to the
is a tuple (L, lo, X,%,, E,Inv, F, R) where: L is a finite t|m_e—successor region. The initial stqteR;G(A) is (lo,Q).
set of locations [, is theinitial location; X is a finite set A final (resp. repeated) state RIG(A) is a state(/, r) with
of clocks ¥ is a finite set ofactions £ C L x C(X) x (€ F (resp.£ € R). A fundamental property of the region
¥, x 2X x L is a finite set otransitions for (¢, g,a,r,¢') € ~ 9raph [11] is:

E, g is theguard, a the action, andr the resetset; Inv € Theorem 1 ([11]): £(RG(A)) = Unt(L(A)). o
C(X)L associates with each location awvariant, as usual 1he (maximum) size of the region graph is exponential in
we require the invariants to be conjunctions of constraints éf€ number of clocks and in the maximum constant of the
the forma < ¢ with <€ {<,<}. FC L andR C L are automatond (see [11]):|[RG(4)| = |L| - |X]!- 21X] . KIX]
respectively thdinal and repeatedsets of locations. W WhereK is the largest constant used i

A statet_)f A is_ a pair(_é,_v)_ €L x Rgo. A run o of A from £ product of TA

(Lo, vp) is a (finite or infinite) sequence of alternatidglay

and discretemoves: Definition 2 (Product of two TA)Let A; = (L;, 1§, Xi,

5 %t B, Iny;) fori € {1,2}, be two TAs.t.X;NX, = @. The
o = (60,2)0) =, (60,1]0 +(50) 20, (61,111) s productof A; and A, is the TAA; x Ay = (L,Zo,)(7 >,

Gnoa On E,Inv) given by: L = Ly x Lo; lg = (I§,13); ¥ =Xt UX?
(bn; o) =5 (bn; v + On) X = X, U Xo: and E C L % C(X) x % x 2% x L and

s.t. for every; > 0: ((41,€2),91.2,0,1,(€1,4)) € Eif:
e v; +d = Inv(¢;) for 0 <6 < §;; « eithero € (21 NX2) \ {7}, and ¢) (¢x, gx, 0,7k, ¢,) €
« there is some transitiof?;, g;, a;, 7, ;i+1) € E S.t.: ) E, for k=1andk = 2; (i) g12 = g1 A g2 and (i)

v; + 0; ’: g; and ¢7) Vit1 = ('Ui + (51)[71] r=r7ry Urs;

The set of finite (resp. infinite) runs from a states denoted  « orfork=1o0rk =2, 0 € (X \ ¥3_4) U {7}, and ¢)
Runs (s, A) (resp.Rung’(s, A)) and we defindRuns (A4) = (k> grs 0,78, £y,) € Ei; (i0) g12 = g and §ii) r = ry;
Runs ((lo,0), A), Runs’(A) = Rung’((ly,0), A) and finally  and finally Inv(£y, £5) = Inv(£1) A Inv(£s). [ |

RungA) = Runs (4) URun$'(A). If g is finite and ends in
sn, We letlast(p) = s,,. Because of the denseness of the time
domain, the transition graph o is infinite (uncountable A. The Model

number of states and delay edges). Trece tr(o), of @  To model timed systems with faults, we use timed auto-
run ¢ is the timed wordr /5 (doagd1a1 - - - andy - -+ ). We let  mata on the alphabét, ; = ¥, U{f} wheref is thefaulty
Dur(g) = Dur(tr(o)). For V. C RungA), we letTr(V) =  (and unobservable) event. We only consider one type of fault,
{tr(o) | o€V} but the results we give are valid for many types of faults
A finite (resp. infinite) timed wordwv is acceptedy A if it {f1, f2,---, f}: indeed solving the many types diagnosab-
is the trace of a run ofl that ends in arf'-location (resp. a jlity problem amounts to solving. one type diagnosability
run that reaches |nf|n|te|y often db‘location).,c*(A) (reSp. pr0b|ems [7] The observable events are givenzb)yg »
L£+(A)) is the set of traces of finite (resp. infinite) timedand r is always unobservable.
words accepted byl, and L(A) = L*(A) U L(A) is the  The system we want to supervise is given by a AA=
set of timed words accepted by. In the sequel we often (L,10,X,%, s, E,Inv). Fig. 1 gives an example of such a
omit the sets? andF" in TA and this implicitly means” = L system. Invariants in the automato# are written within

andR = @. square brackets as [ < 3.
A timed automatonA is deterministicif there is nor

labelled transition in4, and if, whenever?, g, a,r,¢') and
(¢,g',a,r',¢") are transitions ofd, g A ¢’ = FALSE. A is
completeif from each state(¢,v), and for each actiom,
there is a transitior{/, g, a,r, ¢') such thatv = g. We note %

IIl. FAULT DIAGNOSISPROBLEMS & K NOWN RESULTS
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DTA the class of deterministic timed automata. 3]

1
z <
l3
D. Region Graph of a TA —{ o ’xa‘ [z <3|
The region graph RGA) of a TA A is a finite quotient %
of the infinite graph ofd which is time-abstract bisimilar to c =
A [11]. It is a finite automaton (FA) on the alphabBt =

EU{r}. The states oRG(A) are pairs(, ) wherel € L is Figure 1. The Timed Automatos



Let AeN. Arunof A
0 = (fo,00) 2 (boyv0+ 8o) 2 (£1,01) - -
nt (enyvn) % (gnvvn + 6) e

C—

is A-faulty if: (1) there is an index s.t. a; = f and (2)
the duration of the run’ = (¢;,v;) LI (s vr +
dn)--- is larger thanA. We let Faulty. 5 (A) be the set
of A-faulty runs of A. Note that by definition, ifA’ > A
then Faultys o, (A) C Faulty, 5 (A4). We let Faulty(4) =
UasoFaultys o (4) = Faulty.,(A4) be the set of faulty runs
of A, andNonFaulty A) = RungA) \ Faulty(A) be the set
of non-faulty runs ofA. Moreover we letFaulty? , (4) =
Tr(Faultys A (A)) and NonFaulty (A) = Tr(NonFaulty A))
which are the tracésof A-faulty and non-faulty runs ofd.

B. Diagnosers

This gives a necessary and sufficient condition for A
diagnosability:

VA € N,
Jp € NonFaulty A)
3p’ € Faultys 5 (A) s.t.

75, (p) = 7/3,(0"),

or in other words A is ¥,-diagnosable iff there is no pair of
runs (p1, p2) with p; € Faultys A (A), p2 € NonFaultyf A)
the X,-traces of which are equal.

Complexity results for the diagnosis problems on timed
automata were established in [8] (see [12] for a comprehens-
ive study) and Problems 1-3 are PSPACE-complete (hote that
PSPACE-completeness already holds Xor= ).

A is not X,-diagnosable—-

)

IV. SENSORMINIMIZATION WITH STATIC OBSERVERS

The purpose of fault diagnosis is to detect a fault as soon |, this section, we extend the results of [1] to systems
as possible. Faults are unobservable and only the eventsgi,'(}en by TA.

¥, can be observed as well as the time elapsed betweenp,gplem 4 (Minimum Cardinality Set):
these events. Whenever the system generates a timed W@ 1< A TA A — (L4, X,%, ¢, E,Inv) andn € N.

w, the observer can only see/s, (w). If an observer can
detect faults in this way it is calleddiagnoser A diagnoser
must detect a fault within a given delay € N.

Definition 3 (X,, A)-Diagnoser): Let A be a TA over the
alphabetz, ;, ¥, C ¥ and A € N. A (X,, A)-diagnoser
for A is a mappingD : TW*(X,) — {0,1} such that:

« for eachp € NonFaultyfA), D(m /5, (0)) =0,

« for eachp € Faulty, , (A4), D(m/s,(0)) = 1. [ |
Alis (X,,A)-diagnosable if there exists(&,, A)-diagnoser
for A. A is X,-diagnosable if there is somk € N s.t. A is
(X,, A)-diagnosable.

Example 1:The TA A in Fig. 1 withX =%, = {a,b, ¢}
is (X, 3)-diagnosable. 183, = {b}, it is not. O

C. Classical Diagnosis Problems

AssumeA = (L, 4y, X, X, s, E,Inv) is a TA . The classical
fault diagnosis problems are the following:

Problem 1 (Bounded oA-Diagnosability):

INPUTS ATA A, X, C Y, andA € N.
PROBLEM: Is A (3,, A)-diagnosable?
Problem 2 (Diagnosability):
INPUTS ATA A andX, C X.
PROBLEM: Is A ¥,-diagnosable?
Problem 3 (Maximum delay):
INPUTS. A TA A and andX:, C 3.
PrRoBLEM: If A is X,-diagnosable, what is the minimurk
s.t. Ais (3,, A)-diagnosable ?

According to Definition 3,4 is X,-diagnosable, iff, there
is someA € N s.t. A is (X,, A)-diagnosable. Thusl is not
¥ ,-diagnosable iftvA € N, A is not (X,, A)-diagnosable.
Moreover a trace based definition @f,, A)-diagnosability
can be stated &s4 is (%,, A)-diagnosable iff

w/go(FauIt)};A(A)) N w/EO(NonFauIt)V(A)) =o. (1)
INotice thattr(p) erasesr and f.
2This definition does not take into accoufgnoruns; this is not difficult
to add and the reader is referred to [12] for more details.

PROBLEM:
(A) Is there any sek, C ¥, with |X,| = n s.t. A is X,-
diagnosable ?
(B) If the answer to (A) is “yes”, compute the minimum
value forn.
Theorem 2:Problem 4 is PSPACE-complete.

The previous results also hold in a more general setting
using masks(see the extended version [10]).

V. SENSORMINIMIZATION WITH DYNAMIC OBSERVERS

The use ofdynamic observersias already advocated for
DES in [1], [3]. We start with an example that shows that
dynamically choosing what to observe can be even more
efficient using timing information.

Example 2:Let 4 be the automaton of Figure 1. To
diagnoseA, we can use @ynamic observethat switches,

b andc-sensors on/off. If we do not measure time, to be able
to detect faults in4, we have to switch the sensor on at
the beginning. When an has occurred, we must be ready
for either anb or a c and therefore, switch on thieand ¢
sensors on. A dynamic observer must thus first obsése
and after an occurrence of observe{b, c}.

If the observer can measure time using a clock, gaif
can first switch the: sensor on. If am occurs wheny < 2,
then switch theh sensor on and iff > 2 switch thec sensor
on. This way the observer never has to observe more than
event at each point in time. O

A. Dynamic Observers

The choice of the events to observe can depend on the
choices the observer has made before and on the observations
(event, time-stamp) it has made. Moreover an observer may
have unboundedmemory. The following definition extends
the notion of observers introduced in [1] to the timed setting.

Definition 4 (Observer):An observer Obover is ade-
terministic and completémed automatorObs= (N, ng, Y,



¥, 8, Invtryue) together with a mapping) : N — 2%, max, and agranularity % As an example, a TA of resource
where N is a (possibly infinite) set of locationsiy € N 1 = ({c,d},2, ) can use two clocks; andd, and the clocks
is the initial location,X is the set of observable events,constraints using the rationals2 < k/m < 2 wherek € Z
§: NxXxCY)— N x2Y is the transition function andm = 3. A resourcey, is thus a tripley = (Z, max, )
(a total function), and is a labeling function that specifies where Z is finite set of clocksmax € N and - € Q¢ Is

the set of events that the observer wishes to observe wherhie granularity. DTA,, is the class of DTA of resourcg.

is at locationn. The invariant Invyryge maps every location ~ Remark 1:Notice that the number of locations of the DTA
to TRUE, implying that an observer cannot prevent time fronin DTA , is not bounded and hence this family has an infinite
elapsing. We require that, for any locatiorand anya € ¥,  (yet countable) number of elements.

if a € O(n) thend(n,a,-) = (n, @): this means the observer We now focus on the following problem :

does not change its location nor resets its clocks when anProblem 6 (Most Permissive Dynamis-Diagnoser):

event it has chosen not to observe occurs. B INPUTS ATA A = (L,lo, X, %, f, E,Inv), A € N, and a

As an observer is deterministic we 1&tn,, w) denote the resourcey = (Z, max, ).

state (n,v) reached after reading the timed word and PROBLEM: Compute the seO of all observers in DTA,
O(6(ng,w)) is the set of event®bsobserves aftew. s.t. A is (Obs A)-diagnosable iffObse O.

An observer defines sansducemwhich is a mappingObg : ~ For DES, the previous problem can be solved by computing
TW(X) — TW*(X). Given a wordw, [Obg(w) is the out- & most permissive observer, and we refer to [3] section 5.5
put of the transducer om. It is called theobservationof w  for the formal definition of the most permissive observer.

by the observeDbs This can be done in 2EXPTIME [3], and the solution
_ 3 _ _ is a reduction to a safety control problem under partial
B. Diagnosability with Dynamic Observers observation. For the timed case, we cannot use the same

Definition 5 (Obs A)-diagnoser): Let A be a TA over solution as controller synthesis under partial observation is
3., ; andObsbe an observer ovet. D : TW*(X) — {0,1} undecidable [13]. The solution we present for Problem 6 is

is an (Obs A)-diagnoserfor A if: a modification of an algorithm originally introduced in [9].
« Vp € NonFaultf A), D([Obd(tr(p))) = 0 and D. Fault Diagnosis with DTA [9]
« Vp € Faulty. o (A), D([Obg(tr(p))) = 1. u In case a TAA is ¥,-diagnosable, the diagnoser is a

A'is (Obs A)-diagnosable if there is afObs A)-diagnoser  mapping [8] which performs a state estimate Afafter a
for A. A is Obsdiagnosable if there is som& such thatA  timed word w is read by A. For DES, it is obtained by

is (Obs A)-diagnosable. _ N determinizingthe system, but we cannot always determinize
We now show how to checkbsdiagnosability when the a TA A (see [11]). And unfortunately testing whether a timed
observerObsis a DTA. automaton is determinizable is undecidable [14], [15].

Problem 5 (Deterministic Timed Automata Observers): P. Bouyer and F. Chevalier in [9] considers the pr0b|em
INPUTS: ATA A = (L, lo, X, %, r, E,Inv) and an observer of deciding whether there exists a diagnoser which is a DTA

given by a DTAObs= (N, no,Y, %, 4,0). using resources ip:
PROBLEM: Problem 7 (DTA A-Diagnoser [9]):
(A) Is A Obsdiagnosable? INPUTS ATA A= (L, 4, X, 2,5, E,Inv), A €N, and a
(B) If the answer to (A) is “yes”, compute the minimum resourcey = (Z, max, %).
A € N s.t. A is (Obs A)-diagnosable. PrROBLEM: Is there anyD € DTA, s.t. A is (D, A)-dia-
Theorem 3:Problem 5 is PSPACE-complete. gnosable ?

_ o o Theorem 4 ([9]): Problem 7 is 2EXPTIME-complete.
C. Synthesis of the Most Permissive Dynamic Diagnoser  The solution to the previous problem is based on the

In this section we address the problemsyhthesizinga ~ construction of atwo-player gamethe solution of which
DTA dynamic observer which ensures diagnosability. Folgives thesetof all DTA,, diagnosers (the most permissive
lowing [3], we want to compute aost permissivebserver diagnosers) which can diagnose(or @ is there is none).
(@ if none exists), which gives a representation of all the We recall here the construction of the two-player game.
good observers. Indeed, checking whether there exists a DTALet A = (L, £, X, X7 s, —,Inv) be a TA, X, C . Define
observerObss.t. A is Obsdiagnosable is not an interestingA(A) = (L1 U Lz U L3, €5, X U {2}, X, —a,Inva) as
problem: it suffices to check thatt is x-diagnosable as follows:
the DTA observer which observes continuously will be o Li = {¢',¢ € L}, fori € {1,2,3}, i.e., L; elements are
a solution. copies of the locations i,

When synthesizing (deterministic) timed automata, an im- * z is (new) clock not inX,
portant issue is the amount isourceshe timed automaton  « for £ € L, Inv(¢') = Inv(¢), Inv(£?) = Inv({) A z < A,
can use: this can be formally defined [13] by the (number of) ~ andInv(¢*) = TRUE,
clocks, Z, that the automaton can use, the maximal constant  the transition relation is given by:

_forie {1,2,3), ¢ ~2%R. piif o # f and

3In the sequel, we omit the invariant when a TA is an observer, and (9,a,R)
Ehed) ZI,

replace it by the mapping. J4



SR Lt a # f and thus it is 2EXPTIME-hard.

— for i € {2,3}, ¢
(9:.f,R) /
BACINLUANY/S
(9.f,RU{z})
—_

(=A,7,2)
_

1.R) E. Problem 6 is in 2EXPTIME

- A% ifa# fande 220 g, We now show how to modify the previous algorithm to

-2 NS solve Problem 6, and obtain the following result;
The previous construction creatgésopies of A: the system Theorem 5:Problem 6 can be solved in 2EXPTIME.
starts in copyl, when a fault occurs it switches to copy Remark 2:In [9] it is also proved that for Event Record-
2, resetting the clock:, and when in copy2 (a fault has ing Automata (ERA) [16] Problem 7 becomes PSPACE-
occurred) it can switch to cop¥ after A time units. We can complete. This result does not carry over in our case, as
then defineL; as the non-faulty locations, anfl; as the there is still an exponential step with the choice of the sets
A-faulty locations. of events to be observed.

Given a resourcg: = (Y,max, L) (X NY = ©), a
minimal guardfor p is a guard which defines a region of
granularityy.. We define the (symbolia)niversal automaton  In this section we extend the notion obst defined for
U = ({0},{0},Y,%, E,, Inv,) by: finite state observers in [3] to the case of timed observers.

VI. OPTIMAL DYNAMIC OBSERVERS

o Inv,(0) = TRUE, A. Weighted/Priced Timed Automata

e (0,9,a,R,0) € E, for each(g,a,R) s.t.a € ¥, R C . , . . .
(0,9,a ) K (9, F) “ Weighted/priced timed automata were introduced in [17],

Y, andg is a minimal guard fop. 18 d th tend TA withorices/costs/weighten th
U is finite becausel, is finite. Nevertheles$/ is not [. ] an ney exten W rprl_c_es costsiweighten the
me elapsing and discrete transitions.

L : . t
g](catéalggl(r;l?cfol:e;auasi;a“? S:rr(]j clrétt)t(;sr;a“(toar)es% gilgerr]eor;teselSDefinition 6 (Priced Timed Automata)A priced timed
P 9 ' 9,a): g utomaton (PTA)s a pair(A, Cos) where A = (L, ¢y, X,

A, we have to find when a set of clocks has to be rese; E,Inv) is a timed automaton ar@ostis acost function
This can provide enough information to distinguidhfaulty ./

which is a mapping fron. U E to N. |
words from non-faulty words. Let
The algorithm of [9] requires the following steps:
1) define the region grapRG(A(A) x U), 0 = (Lo,v0) 2 (Lo, vo + 80) < (€1, 01) ---
2) compute gprojection of this region graph: o an-—1 (s 0m) On, by v + 1)

« let(g,a, R) be alabel of an edge RG(A(A
« let ¢’ be the unique minimal guard sfy] C
« define the projectiony, (g, a, R) by (¢, \, R
with A = a if a € 3, and py(g,a, R)
otherwise.
The projected automatop;,(RG(A(A) x U)) is the Cosle) = Bico.nCOSLA) - 8 + Bico.n—1Costes)
automatorRG(A(A) x ) where each label is repla- The mean costof ¢ is defined to be the cost per time

U,
J7; be a run ofA. We denote by; = (¢;,(g;,ai, R;), {;i+1) the
Y discrete transition taken frorf?;, v; + d;) t0 ({;41,vi11)-

T The costof the runy is defined by:

= X

=

ced bypy(a). unit and giveft by Costp) = Cost{p)/Dur(g). The cost
3) determinizep, (RG(A(A) x U)) (removing T actions) of runs of durationt € R, is defined byCos(t) =
and obtainH 4 a ., sup{Cos{[Obqg(p)) | Dur(o) = t}. The maximal mean cost
4) build a two-player safety gam@ a ,, as follows: of (A, Cosy is Cos{A) = limsup,_,, Cos(t). The minimal
" (g.0Y) . . mean cost is defined dually and denoteds{ A4).
« each transitions ———— s’ in H4 A, Yields a

transition inG 4,4, of the form: B. Cost of an Observer

(g,a) (9,a,Y) To select a best or optimal dynamic observer which
. - >‘ ensuresA-diagnosability, we need to define a metric to
« the round-shaped state are the states of Player clgmpart_e them. We extend_the one (_jefmed in [3] for DES
h th re-shaped stat re Plaver 0 ttP take into account (real) time elapsing.
\(Iic/h:r;?siceeo?qclrjlz ilscI?sp?o rSe:eE'}c)S are Flayer v std eI:_;et A be a TA andObsa DTA observerObsis extended
. the Bad states (for Player 0) are.the states of thigto a P(D)TA by associating costs with locations and
form {(fr, 1), (£2,72) y (r,72)} with both a transitions. The cost associated with the discrete transitions
Afault 1(;n 1L)) o nor-faulty (i) location, S the cost of switching on the sensors for a set of observable
h . Iy ‘ 3 ¥ (it " events, and the cost of a location is the cost per time unit of
The main .resu ts of [9] are: ) ] _having a set of sensors activated.
« thereisa TAD € DTA, s.t. Ais (D, %)-d!agnos’?ble it Letobe arun ofd. As Obsis deterministic (and complete)
Player 0 can win the safety game “avoid Ba@s,a ., there is exactly one run oDbs the trace of which is
« it follows that Problem 7 can be solved in 2EXPTIME [0bq(tr(o)). Given g, let [Obg(o) be this unique run. The

asGa,a,u has size doubly exponential it, A andu,  ayerage cost of the runobserved bydbsis Cos{[Obg(o)).
« the acceptance problem for Alternating Turing machines

of exponential space can be reduced to Problem 7 and'Runs of duratiord are not taken into account.



Givent € R+, themaximal mean cosif runs of duration
t is defined by:

[1]
Cos(A4,0Obs t) = sup {Cos{([Obd(0))}-

o€RuUns (A)ADur(p)=t

The maximal average cosif the pair< A, Obs> is defined  [2]

Cos{< A, Obs>) = lim sup Cos( A, Obs t).
t—o0

We can then state the following problem: [3]
Problem 8 (Cost of an Observer):

INPUTS: A TA A and (Obs Cost a PDTA observer. (4]
ProBLEM: ComputeCos(< A, Obs>).

C. Computing the Cost of a Given Timed Observer (5]
The computation of optimal infinite schedules for TA has
been addressed in [19]. The main result of [19] is: (6]

Theorem 6 (Minimal/Maximal Mean Cost [19])Given a
PTA A, computingCostand Costis PSPACE-complete. [7]
The definition of the cost of an observer is exactly the defi-
nition of the maximal mean cost in [19] and thus: 8]

Theorem 7:Problem 8 is PSPACE-complete.

D. Optimal Synthesis Problem

Checking whether the mean cost of a given observer is ledS]
thank requires that we have computed or are given such an
observer. A more difficult version of Problem 8 is to check10]
for the existence of cheap dynamic observer:

Problem 9 (Bounded Cost Dynamic Observer): [
INPUTS A TA A = (L, 6, X, 2,5, E,Inv), A e N, pa [12]
resource and € N.

PROBLEM: [13]

(A) Isthere a dynamic observér e DTA,, s.t. Ais (D, A)-
diagnosable an€os{< A, D>) < k ?

(B) If the answer to (A) is “yes”, compute a witness
dynamic observer? [14]

We cannot provide of proof that Problem 9 is decidable.

However, we give a lower bound for Problem 9 and latefis

discuss the exact complexity.

Theorem 8:Problem 9 is 2EXPTIME-hard.

VIl. CONCLUSION
The results of the paper are summarized by the line “TA”

[16]

in Table | below. (7]
TABLE |
SUMMARY OF THE RESULTS
[18]
Static Observers Dynamic Observers
Min. Cardinality Most Perm. Obs.] Optimal Observer
DES | NP-Complete [1] [ 2EXPTIME [1] 2EXPTIME [2] [19]
TA PSPACE-Completd  2EXPTIME 2EXPTIME-hard

The complexity/decidability status of Problem 9 is left
open. A solution to this problem would be to solve the
following optimization problem on the class of S-PTGA:

Problem 10 (Optimal Infinite Schedule in S-PTGA):
INPUTS: A S-PTGA(A, Cosl, a set oBadstates and < N.
PROBLEM: Is there a strategy for Player 1inA s.t. f(A4) (A
controlled by f) avoidsBad and satisfieCos{ f(A)) < k?
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