
Dynamic Observers for Fault Diagnosis of Timed Systems

Franck Cassez,Member, IEEE

Abstract— In this paper we extend the work ondynamic ob-
serversfor fault diagnosis [1], [2], [3] to timed automata. We
study sensor minimization problems with static observers and
then address the problem of computing the most permissive
dynamic observer for a system given by a timed automaton.

I. I NTRODUCTION

Discrete-event systems [4] (DES) can be modelled by
finite automata over an alphabet of actions/eventsΣ. The
fault diagnosis problem [5] for DES consists in detecting
faulty sequences in the system. Afaulty sequence is a
sequence of the DES containing an occurrence of a special
eventf . It is assumed that an externalobserverwhich has
to detect faults, knows the specification/model of the DES,
but can partially observe the system at runtime: it is able to
observe sequences ofobservableevents inΣo ⊆ Σ. Based on
this knowledge, it has to announce whether an observation
(in Σ∗

o) stems from a faulty sequence (in(Σ ∪ {τ, f})∗).
Checking diagnosability of DES can be done in PTIME and
computing a diagnoser amounts to determinizing the DES
(EXPTIME) [5], [6], [7].

Fault Diagnosis for Timed Automata.The fault diagnosis
problem for Timed Automata (TA) has been introduced
and solved by S. Tripakis in [8], where he proved that
checking diagnosability of a timed automaton is PSPACE-
complete. In the timed case however, the diagnoser may be
a Turing machine. In a subsequent work by P. Bouyer and
F. Chevalier [9], the problem of checking whether a timed
automaton is diagnosable using a diagnoser which is a
deterministictimed automaton (DTA) was studied, and they
proved that this problem was 2EXPTIME-complete.

Our Contribution and Related Work.In [1], [2] (and [3]
for an extended version), we have introduceddynamic ob-
serversfor fault diagnosis of DES. In this framework, an
observer can choose dynamically which events it is going to
observe and make a new choice after each occurrence of any
(currently) observable event. In [1], [3] we have shown how
to compute (2EXPTIME) amost permissive observerwhich
represents all the the dynamic observers that ensures that a
DES is diagnosable. In [2] we have furthermore introduced
a notion ofcost of an observer, and proved that an optimal
observer could also be computed in 2EXPTIME.

In this paper, we extend the previous results for systems
given by timed automata. Proofs are omitted and can be
found in [10].

Franck Cassez is with National ICT Australia & CNRS, Locked Bag
6016, The University of New South Wales, Sydney NSW 1466, Australia.
franck.cassez@cnrs.irccyn.fr,Franck.Cassez@nicta.com.au

Author supported by a Marie Curie International Outgoing Fellowship
within the 7th European Community Framework Programme.

II. PRELIMINARIES

Σ denotes a finite alphabet andΣτ = Σ∪{τ} whereτ 6∈ Σ
is theunobservableaction.B = {TRUE, FALSE} is the set of
boolean values,N the set of natural numbers,Z the set of
integers andQ the set of rational numbers.R is the set of
real numbers andR≥0 is the non-negative real numbers.

A. Clock Constraints

Let X be a finite set of variables calledclocks. A clock
valuation is a mappingv : X → R≥0. We letRX

≥0 be the set
of clock valuations overX. We let0X be thezerovaluation
where all the clocks inX are set to0 (we use0 when
X is clear from the context). Givenδ ∈ R, v + δ denotes
the valuation defined by(v + δ)(x) = v(x) + δ. We let
C(X) be the set ofconvex constraintson X, i.e., the set of
conjunctions of constraints of the formx ./ c with c ∈ Z
and./∈ {≤, <, =, >,≥}. Given a constraintg ∈ C(X) and
a valuationv, we write v |= g if g is satisfied byv. Given
R ⊆ X and a valuationv, v[R] is the valuation defined by
v[R](x) = v(x) if x 6∈ R andv[R](x) = 0 otherwise.

B. Timed Words

The set of finite (resp. infinite) words overΣ is Σ∗ (resp.
Σω) and we letΣ∞ = Σ∗ ∪ Σω. We let ε be the empty
word. A languageL is any subset ofΣ∞. A finite (resp.
infinite) timed wordoverΣ is a word in(R≥0.Σ)∗.R≥0 (resp.
(R≥0.Σ)ω). Dur(w) is the duration of a timed wordw which
is defined to be the sum of the durations (inR≥0) which
appear inw; if this sum is infinite, the duration is∞. Note
that the duration of an infinite word can be finite, and such
words which contain an infinite number of letters, are called
Zenowords.

TW∗(Σ) is the set of finite timed words overΣ, TWω(Σ),
the set of infinite timed words andTW(Σ) = TW∗(Σ) ∪
TWω(Σ). A timed languageis any subset ofTW(Σ).

In this paper we write timed words as0.4 a 1.0 b 2.7 c · · ·
where the real values are the durations elapsed between two
letters: thusc occurs at global time4.1. We letUnt(w) be the
untimedversion ofw obtained by erasing all the durations
in w, e.g., Unt(0.4 a 1.0 b 2.7 c) = abc. Given a timed
languageL, we let Unt(L) = {Unt(w) | w ∈ L}.

Let π/Σ′ be the projection of timed words ofTW(Σ)
over timed words ofTW(Σ′). When projecting a timed
word w on a sub-alphabetΣ′ ⊆ Σ, the durations elap-
sed between two events are set accordingly: for instance
π/{a,c}(0.4 a 1.0 b 2.7 c) = 0.4 a 3.7 c (projection erases
some letters but keep the time elapsed between two letters).
Given Σ′ ⊆ Σ, π/Σ′(L) = {π/Σ′(w) | w ∈ L}.

C. Timed Automata

Timed automata (TA) are finite automata extended with
real-valued clocks to specify timing constraints between
occurrences of events. For a detailed presentation of the
fundamental results for timed automata, the reader is referred
to the seminal paper of R. Alur and D. Dill [11].

Definition 1 (Timed Automaton):A Timed AutomatonA
is a tuple(L, l0, X,Στ , E, Inv, F, R) where: L is a finite
set of locations; l0 is the initial location; X is a finite set
of clocks; Σ is a finite set ofactions; E ⊆ L × C(X) ×
Στ ×2X ×L is a finite set oftransitions; for (`, g, a, r, `′) ∈
E, g is the guard, a the action, and r the reset set; Inv ∈
C(X)L associates with each location aninvariant; as usual
we require the invariants to be conjunctions of constraints of
the form x � c with �∈ {<,≤}. F ⊆ L and R ⊆ L are
respectively thefinal and repeatedsets of locations. �
A stateof A is a pair(`, v) ∈ L×RX

≥0. A run % of A from
(`0, v0) is a (finite or infinite) sequence of alternatingdelay
anddiscretemoves:

% = (`0, v0)
δ0−→ (`0, v0 + δ0)

a0−→ (`1, v1) · · ·

· · · an−1−−−→ (`n, vn) δn−→ (`n, vn + δn) · · ·

s.t. for everyi ≥ 0:

• vi + δ |= Inv(`i) for 0 ≤ δ ≤ δi;
• there is some transition(`i, gi, ai, ri, `i+1) ∈ E s.t. : (i)

vi + δi |= gi and (ii) vi+1 = (vi + δi)[ri].
The set of finite (resp. infinite) runs from a states is denoted
Runs∗(s,A) (resp.Runsω(s,A)) and we defineRuns∗(A) =
Runs∗((l0,0), A), Runsω(A) = Runsω((l0,0), A) and finally
Runs(A) = Runs∗(A)∪Runsω(A). If % is finite and ends in
sn, we letlast(%) = sn. Because of the denseness of the time
domain, the transition graph ofA is infinite (uncountable
number of states and delay edges). Thetrace, tr(%), of a
run % is the timed wordπ/Σ(δ0a0δ1a1 · · · anδn · · ·). We let
Dur(%) = Dur(tr(%)). For V ⊆ Runs(A), we let Tr(V) =
{tr(%) | % ∈ V }.

A finite (resp. infinite) timed wordw is acceptedby A if it
is the trace of a run ofA that ends in anF -location (resp. a
run that reaches infinitely often anR-location).L∗(A) (resp.
Lω(A)) is the set of traces of finite (resp. infinite) timed
words accepted byA, andL(A) = L∗(A) ∪ Lω(A) is the
set of timed words accepted byA. In the sequel we often
omit the setsR andF in TA and this implicitly meansF = L
andR = ∅.

A timed automatonA is deterministic if there is no τ
labelled transition inA, and if, whenever(`, g, a, r, `′) and
(`, g′, a, r′, `′′) are transitions ofA, g ∧ g′ ≡ FALSE. A is
completeif from each state(`, v), and for each actiona,
there is a transition(`, g, a, r, `′) such thatv |= g. We note
DTA the class of deterministic timed automata.

D. Region Graph of a TA

The region graph RG(A) of a TA A is a finite quotient
of the infinite graph ofA which is time-abstract bisimilar to
A [11]. It is a finite automaton (FA) on the alphabetE′ =
E∪{τ}. The states ofRG(A) are pairs(`, r) where` ∈ L is

a location ofA andr is a regionof RX
≥0. More generally, the

edges of the graph are tuples(s, t, s′) wheres, s′ are states
of RG(A) and t ∈ E′. Genuine unobservable moves ofA
labelledτ are labelled by tuples of the form(s, (g, τ, r), s′)
in RG(A). An edge(g, λ,R) in the region graph corresponds
to a discrete transition ofA with guardg, actionλ and reset
setR. A τ move in RG(A) stands for a delay move to the
time-successor region. The initial state ofRG(A) is (l0,0).
A final (resp. repeated) state ofRG(A) is a state(`, r) with
` ∈ F (resp.` ∈ R). A fundamental property of the region
graph [11] is:

Theorem 1 ([11]):L(RG(A)) = Unt(L(A)).
The (maximum) size of the region graph is exponential in
the number of clocks and in the maximum constant of the
automatonA (see [11]):|RG(A)| = |L| · |X|! · 2|X| ·K |X|

whereK is the largest constant used inA.

E. Product of TA

Definition 2 (Product of two TA):Let Ai = (Li, l
i
0, Xi,

Σi
τ , Ei, Invi) for i ∈ {1, 2}, be two TA s.t.X1∩X2 = ∅. The

product of A1 and A2 is the TA A1 × A2 = (L, l0, X,Στ ,
E, Inv) given by:L = L1 ×L2; l0 = (l10, l

2
0); Σ = Σ1 ∪Σ2;

X = X1 ∪ X2; and E ⊆ L × C(X) × Στ × 2X × L and
((`1, `2), g1,2, σ, r, (`′1, `

′
2)) ∈ E if:

• eitherσ ∈ (Σ1 ∩Σ2) \ {τ}, and (i) (`k, gk, σ, rk, `′k) ∈
Ek for k = 1 andk = 2; (ii) g1,2 = g1 ∧ g2 and (iii)
r = r1 ∪ r2;

• or for k = 1 or k = 2, σ ∈ (Σk \Σ3−k) ∪ {τ}, and (i)
(`k, gk, σ, rk, `′k) ∈ Ek; (ii) g1,2 = gk and (iii) r = rk;

and finally Inv(`1, `2) = Inv(`1) ∧ Inv(`2). �

III. FAULT DIAGNOSIS PROBLEMS & K NOWN RESULTS

A. The Model

To model timed systems with faults, we use timed auto-
mata on the alphabetΣτ,f = Στ ∪{f} wheref is the faulty
(and unobservable) event. We only consider one type of fault,
but the results we give are valid for many types of faults
{f1, f2, · · · , fn}: indeed solving the many types diagnosab-
ility problem amounts to solvingn one type diagnosability
problems [7]. The observable events are given byΣo ⊆ Σ
andτ is always unobservable.

The system we want to supervise is given by a TAA =
(L, l0,X, Στ,f , E, Inv). Fig. 1 gives an example of such a
system. Invariants in the automatonA are written within
square brackets as in[x ≤ 3].

l0

l1

[x ≤ 3]

l2

[x ≤ 3]

l3

[x ≤ 3]

l4

l5

f

a

b

c

a; x ≤ 2

a; x > 2

b

c

τ

τ

Figure 1. The Timed AutomatonA

Let ∆ ∈ N. A run of A

% = (`0, v0)
δ0−→ (`0, v0 + δ0)

a0−→ (`1, v1) · · ·

· · · an−1−−−→ (`n, vn) δn−→ (`n, vn + δ) · · ·

is ∆-faulty if: (1) there is an indexi s.t. ai = f and (2)
the duration of the run%′ = (`i, vi)

δi−→ · · · δn−→ (`n, vn +
δn) · · · is larger than∆. We let Faulty≥∆(A) be the set
of ∆-faulty runs ofA. Note that by definition, if∆′ ≥ ∆
then Faulty≥∆′(A) ⊆ Faulty≥∆(A). We let Faulty(A) =
∪∆≥0Faulty≥∆(A) = Faulty≥0(A) be the set of faulty runs
of A, andNonFaulty(A) = Runs(A) \ Faulty(A) be the set
of non-faulty runs ofA. Moreover we letFaultytr

≥∆(A) =
Tr(Faulty≥∆(A)) and NonFaultytr(A) = Tr(NonFaulty(A))
which are the traces1 of ∆-faulty and non-faulty runs ofA.

B. Diagnosers

The purpose of fault diagnosis is to detect a fault as soon
as possible. Faults are unobservable and only the events in
Σo can be observed as well as the time elapsed between
these events. Whenever the system generates a timed word
w, the observer can only seeπ/Σo

(w). If an observer can
detect faults in this way it is called adiagnoser. A diagnoser
must detect a fault within a given delay∆ ∈ N.

Definition 3 ((Σo,∆)-Diagnoser): Let A be a TA over the
alphabetΣτ,f , Σo ⊆ Σ and ∆ ∈ N. A (Σo,∆)-diagnoser
for A is a mappingD : TW∗(Σo) → {0, 1} such that:
• for each% ∈ NonFaulty(A), D(π/Σo

(%)) = 0,
• for each% ∈ Faulty≥∆(A), D(π/Σo

(%)) = 1. �
A is (Σo,∆)-diagnosable if there exists a(Σo,∆)-diagnoser
for A. A is Σo-diagnosable if there is some∆ ∈ N s.t. A is
(Σo,∆)-diagnosable.

Example 1:The TAA in Fig. 1 with Σ = Σo = {a, b, c}
is (Σ, 3)-diagnosable. IfΣo = {b}, it is not. �

C. Classical Diagnosis Problems

AssumeA = (L, `0, X,Στ,f , E, Inv) is a TA . The classical
fault diagnosis problems are the following:

Problem 1 (Bounded or∆-Diagnosability):
INPUTS: A TA A, Σo ⊆ Σ, and∆ ∈ N.
PROBLEM: Is A (Σo,∆)-diagnosable?

Problem 2 (Diagnosability):
INPUTS: A TA A andΣo ⊆ Σ.
PROBLEM: Is A Σo-diagnosable?

Problem 3 (Maximum delay):
INPUTS: A TA A and andΣo ⊆ Σ.
PROBLEM: If A is Σo-diagnosable, what is the minimum∆
s.t. A is (Σo,∆)-diagnosable ?

According to Definition 3,A is Σo-diagnosable, iff, there
is some∆ ∈ N s.t.A is (Σo,∆)-diagnosable. ThusA is not
Σo-diagnosable iff∀∆ ∈ N, A is not (Σo,∆)-diagnosable.
Moreover a trace based definition of(Σo,∆)-diagnosability
can be stated as2: A is (Σo,∆)-diagnosable iff

π/Σo
(Faultytr

≥∆(A)) ∩ π/Σo
(NonFaultytr(A)) = ∅. (1)

1Notice thattr(%) erasesτ andf .
2This definition does not take into accountZenoruns; this is not difficult

to add and the reader is referred to [12] for more details.

This gives a necessary and sufficient condition for nonΣo-
diagnosability:

A is not Σo-diagnosable⇐⇒


∀∆ ∈ N,

∃ρ ∈ NonFaulty(A)
∃ρ′ ∈ Faulty≥∆(A) s.t.

π/Σo
(ρ) = π/Σo

(ρ′),

(2)

or in other words,A is Σo-diagnosable iff there is no pair of
runs (ρ1, ρ2) with ρ1 ∈ Faulty≥∆(A), ρ2 ∈ NonFaulty(A)
the Σo-traces of which are equal.

Complexity results for the diagnosis problems on timed
automata were established in [8] (see [12] for a comprehens-
ive study) and Problems 1–3 are PSPACE-complete (note that
PSPACE-completeness already holds forΣo = Σ).

IV. SENSORM INIMIZATION WITH STATIC OBSERVERS

In this section, we extend the results of [1] to systems
given by TA.

Problem 4 (Minimum Cardinality Set):
INPUTS: A TA A = (L, `0, X,Στ,f , E, Inv) andn ∈ N.
PROBLEM:

(A) Is there any setΣo ⊆ Σ, with |Σo| = n s.t. A is Σo-
diagnosable ?

(B) If the answer to (A) is “yes”, compute the minimum
value forn.

Theorem 2:Problem 4 is PSPACE-complete.

The previous results also hold in a more general setting
usingmasks(see the extended version [10]).

V. SENSORM INIMIZATION WITH DYNAMIC OBSERVERS

The use ofdynamic observerswas already advocated for
DES in [1], [3]. We start with an example that shows that
dynamically choosing what to observe can be even more
efficient using timing information.

Example 2:Let A be the automaton of Figure 1. To
diagnoseA, we can use adynamic observerthat switchesa,
b andc-sensors on/off. If we do not measure time, to be able
to detect faults inA, we have to switch thea sensor on at
the beginning. When ana has occurred, we must be ready
for either anb or a c and therefore, switch on theb and c
sensors on. A dynamic observer must thus first observe{a}
and after an occurrence ofa, observe{b, c}.

If the observer can measure time using a clock, sayy, it
can first switch thea sensor on. If ana occurs wheny ≤ 2,
then switch theb sensor on and ify > 2 switch thec sensor
on. This way the observer never has to observe more than
event at each point in time. �

A. Dynamic Observers

The choice of the events to observe can depend on the
choices the observer has made before and on the observations
(event, time-stamp) it has made. Moreover an observer may
haveunboundedmemory. The following definition extends
the notion of observers introduced in [1] to the timed setting.

Definition 4 (Observer):An observer ObsoverΣ is ade-
terministic and completetimed automatonObs= (N,n0, Y,

Σ, δ, InvTRUE) together with a mappingO : N → 2Σ,
where N is a (possibly infinite) set of locations,n0 ∈ N
is the initial location,Σ is the set of observable events,
δ : N × Σ × C(Y) → N × 2Y is the transition function
(a total function), andO is a labeling function that specifies
the set of events that the observer wishes to observe when it
is at locationn. The invariant3 InvTRUE maps every location
to TRUE, implying that an observer cannot prevent time from
elapsing. We require that, for any locationn and anya ∈ Σ,
if a 6∈ O(n) thenδ(n, a, ·) = (n, ∅): this means the observer
does not change its location nor resets its clocks when an
event it has chosen not to observe occurs. �
As an observer is deterministic we letδ(n0, w) denote the
state (n, v) reached after reading the timed wordw and
O(δ(n0, w)) is the set of eventsObsobserves afterw.
An observer defines atransducerwhich is a mapping[[Obs]] :
TW∗(Σ) → TW∗(Σ). Given a wordw, [[Obs]](w) is the out-
put of the transducer onw. It is called theobservationof w
by the observerObs.

B. Diagnosability with Dynamic Observers

Definition 5 ((Obs,∆)-diagnoser): Let A be a TA over
Στ,f andObsbe an observer overΣ. D : TW∗(Σ) → {0, 1}
is an (Obs,∆)-diagnoserfor A if:

• ∀ρ ∈ NonFaulty(A), D([[Obs]](tr(ρ))) = 0 and
• ∀ρ ∈ Faulty≥∆(A), D([[Obs]](tr(ρ))) = 1. �

A is (Obs,∆)-diagnosable if there is an(Obs,∆)-diagnoser
for A. A is Obs-diagnosable if there is some∆ such thatA
is (Obs,∆)-diagnosable.

We now show how to checkObs-diagnosability when the
observerObs is a DTA.

Problem 5 (Deterministic Timed Automata Observers):
INPUTS: A TA A = (L, `0, X,Στ,f , E, Inv) and an observer
given by a DTAObs= (N,n0, Y,Σ, δ, O).
PROBLEM:

(A) Is A Obs-diagnosable?
(B) If the answer to (A) is “yes”, compute the minimum

∆ ∈ N s.t. A is (Obs,∆)-diagnosable.
Theorem 3:Problem 5 is PSPACE-complete.

C. Synthesis of the Most Permissive Dynamic Diagnoser

In this section we address the problem ofsynthesizinga
DTA dynamic observer which ensures diagnosability. Fol-
lowing [3], we want to compute amost permissiveobserver
(∅ if none exists), which gives a representation of all the
good observers. Indeed, checking whether there exists a DTA
observerObss.t. A is Obs-diagnosable is not an interesting
problem: it suffices to check thatA is Σ-diagnosable as
the DTA observer which observesΣ continuously will be
a solution.

When synthesizing (deterministic) timed automata, an im-
portant issue is the amount ofresourcesthe timed automaton
can use: this can be formally defined [13] by the (number of)
clocks,Z, that the automaton can use, the maximal constant

3In the sequel, we omit the invariant when a TA is an observer, and
replace it by the mappingO.

max, and agranularity 1
m . As an example, a TA of resource

µ = ({c, d}, 2, 1
3) can use two clocks,c andd, and the clocks

constraints using the rationals−2 ≤ k/m ≤ 2 wherek ∈ Z
andm = 3. A resourceµ is thus a tripleµ = (Z,max, 1

m)
whereZ is finite set of clocks,max ∈ N and 1

m ∈ Q>0 is
the granularity. DTAµ is the class of DTA of resourceµ.

Remark 1:Notice that the number of locations of the DTA
in DTAµ is not bounded and hence this family has an infinite
(yet countable) number of elements.

We now focus on the following problem :
Problem 6 (Most Permissive Dynamic∆-Diagnoser):

INPUTS: A TA A = (L, `0, X,Στ,f , E, Inv), ∆ ∈ N, and a
resourceµ = (Z,max, 1

m).
PROBLEM: Compute the setO of all observers in DTAµ,
s.t. A is (Obs,∆)-diagnosable iffObs∈ O.
For DES, the previous problem can be solved by computing
a most permissive observer, and we refer to [3] section 5.5
for the formal definition of the most permissive observer.
This can be done in 2EXPTIME [3], and the solution
is a reduction to a safety control problem under partial
observation. For the timed case, we cannot use the same
solution as controller synthesis under partial observation is
undecidable [13]. The solution we present for Problem 6 is
a modification of an algorithm originally introduced in [9].

D. Fault Diagnosis with DTA [9]

In case a TAA is Σo-diagnosable, the diagnoser is a
mapping [8] which performs a state estimate ofA after a
timed word w is read byA. For DES, it is obtained by
determinizingthe system, but we cannot always determinize
a TA A (see [11]). And unfortunately testing whether a timed
automaton is determinizable is undecidable [14], [15].

P. Bouyer and F. Chevalier in [9] considers the problem
of deciding whether there exists a diagnoser which is a DTA
using resources inµ:

Problem 7 (DTAµ ∆-Diagnoser [9]):
INPUTS: A TA A = (L, `0, X,Στ,f , E, Inv), ∆ ∈ N, and a
resourceµ = (Z,max, 1

m).
PROBLEM: Is there anyD ∈ DTAµ s.t. A is (D,∆)-dia-
gnosable ?

Theorem 4 ([9]): Problem 7 is 2EXPTIME-complete.
The solution to the previous problem is based on the

construction of atwo-player game, the solution of which
gives theset of all DTAµ diagnosers (the most permissive
diagnosers) which can diagnoseA (or ∅ is there is none).

We recall here the construction of the two-player game.
Let A = (L, `0, X,Στ,f ,→, Inv) be a TA,Σo ⊆ Σ. Define

A(∆) = (L1 ∪ L2 ∪ L3, `
1
0, X ∪ {z},Στ,f ,→∆, Inv∆) as

follows:
• Li = {`i, ` ∈ L}, for i ∈ {1, 2, 3}, i.e.,Li elements are

copies of the locations inL,
• z is (new) clock not inX,
• for ` ∈ L, Inv(`1) = Inv(`), Inv(`2) = Inv(`) ∧ z ≤ ∆,

and Inv(`3) = TRUE,
• the transition relation is given by:

– for i ∈ {1, 2, 3}, `i (g,a,R)−−−−−−→∆ `′i if a 6= f and

`
(g,a,R)−−−−−−→ `′,

– for i ∈ {2, 3}, `i (g,f,R)−−−−−−→∆ `′i if a 6= f and

`
(g,f,R)−−−−−−→ `′,

– `1
(g,f,R∪{z})−−−−−−−−−→∆ `′2 if a 6= f and `

(g,f,R)−−−−−−→ `′,

– `2
(z=∆,τ,∅)−−−−−−−−→∆ `3.

The previous construction creates3 copies ofA: the system
starts in copy1, when a fault occurs it switches to copy
2, resetting the clockz, and when in copy2 (a fault has
occurred) it can switch to copy3 after∆ time units. We can
then defineL1 as the non-faulty locations, andL3 as the
∆-faulty locations.

Given a resourceµ = (Y,max, 1
m) (X ∩ Y = ∅), a

minimal guard for µ is a guard which defines a region of
granularityµ. We define the (symbolic)universal automaton
U = ({0}, {0}, Y,Σ, Eµ, Invµ) by:
• Invµ(0) = TRUE,
• (0, g, a, R, 0) ∈ Eµ for each(g, a,R) s.t. a ∈ Σ, R ⊆

Y , andg is a minimal guard forµ.
U is finite becauseEµ is finite. NeverthelessU is not

deterministic because it can choose to reset different sets
of clocks Y for a pair “(guard, letter)”(g, a). To diagnose
A, we have to find when a set of clocks has to be reset.
This can provide enough information to distinguish∆-faulty
words from non-faulty words.

The algorithm of [9] requires the following steps:
1) define the region graphRG(A(∆)× U),
2) compute aprojectionof this region graph:

• let (g, a,R) be a label of an edge inRG(A(∆)×U),
• let g′ be the unique minimal guard s.t.[[g]] ⊆ [[g′]];
• define the projectionpU (g, a,R) by (g′, λ,R ∩ Y)

with λ = a if a ∈ Σo and pU (g, a,R) = τ
otherwise.

The projected automatonpU (RG(A(∆) × U)) is the
automatonRG(A(∆)×U) where each labelα is repla-
ced bypU (α).

3) determinizepU (RG(A(∆) × U)) (removingτ actions)
and obtainHA,∆,µ,

4) build a two-player safety gameGA,∆,µ as follows:

• each transitions
(g,a,Y)−−−−−−→ s′ in HA,∆,µ yields a

transition inGA,∆,µ of the form:

s (s, g, a) s′
(g, a) (g, a, Y)

• the round-shaped state are the states of Player 1,
whereas the square-shaped states are Player 0 states
(the choice of the clocks to reset).

• the Bad states (for Player 0) are the states of the
form {(`1, r1), (`2, r2), · · · , (`k, rk)} with both a
∆-faulty (in L3) and a non-faulty (inL1) location.

The main results of [9] are:
• there is a TAD ∈ DTAµ s.t.A is (D,∆)-diagnosable iff

Player 0 can win the safety game “avoid Bad”GA,∆,µ,
• it follows that Problem 7 can be solved in 2EXPTIME

asGA,∆,µ has size doubly exponential inA, ∆ andµ,
• the acceptance problem for Alternating Turing machines

of exponential space can be reduced to Problem 7 and

thus it is 2EXPTIME-hard.

E. Problem 6 is in 2EXPTIME

We now show how to modify the previous algorithm to
solve Problem 6, and obtain the following result:

Theorem 5:Problem 6 can be solved in 2EXPTIME.
Remark 2: In [9] it is also proved that for Event Record-

ing Automata (ERA) [16] Problem 7 becomes PSPACE-
complete. This result does not carry over in our case, as
there is still an exponential step with the choice of the sets
of events to be observed.

VI. OPTIMAL DYNAMIC OBSERVERS

In this section we extend the notion ofcost defined for
finite state observers in [3] to the case of timed observers.

A. Weighted/Priced Timed Automata

Weighted/priced timed automata were introduced in [17],
[18] and they extend TA withprices/costs/weightson the
time elapsing and discrete transitions.

Definition 6 (Priced Timed Automata):A priced timed
automaton (PTA)is a pair (A, Cost) whereA = (L, `0, X,
Στ,f , E, Inv) is a timed automaton andCostis acost function
which is a mapping fromL ∪ E to N. �
Let

% = (`0, v0)
δ0−→ (`0, v0 + δ0)

a0−→ (`1, v1) · · ·

· · · an−1−−−→ (`n, vn) δn−→ (`n, vn + δn)

be a run ofA. We denote byei = (`i, (gi, ai, Ri), `i+1) the
discrete transition taken from(`i, vi + δi) to (`i+1, vi+1).

The cost of the run% is defined by:

Cost(%) = Σi∈0..nCost(`i) · δi + Σi∈0..n−1Cost(ei).

The mean costof % is defined to be the cost per time
unit and given4 by Cost(%) = Cost(%)/Dur(%). The cost
of runs of durationt ∈ R>0 is defined byCost(t) =
sup{Cost([[Obs]](%)) | Dur(%) = t}. Themaximal mean cost
of (A, Cost) is Cost(A) = lim supt→∞ Cost(t). The minimal
mean cost is defined dually and denotedCost(A).

B. Cost of an Observer

To select a best or optimal dynamic observer which
ensures∆-diagnosability, we need to define a metric to
compare them. We extend the one defined in [3] for DES
to take into account (real) time elapsing.

Let A be a TA andObsa DTA observer.Obs is extended
into a P(D)TA by associating costs with locations and
transitions. The cost associated with the discrete transitions
is the cost of switching on the sensors for a set of observable
events, and the cost of a location is the cost per time unit of
having a set of sensors activated.

Let % be a run ofA. As Obsis deterministic (and complete)
there is exactly one run ofObs the trace of which is
[[Obs]](tr(%)). Given%, let [[Obs]](%) be this unique run. The
average cost of the run% observed byObsis Cost([[Obs]](%)).

4Runs of duration0 are not taken into account.

Givent ∈ R>0, themaximal mean costof runs of duration
t is defined by:

Cost(A, Obs, t) = sup
%∈Runs∗(A)∧Dur(%)=t

{Cost([[Obs]](%))}.

The maximal average costof the pair<A, Obs> is defined

Cost(<A, Obs>) = lim sup
t→∞

Cost(A, Obs, t).

We can then state the following problem:
Problem 8 (Cost of an Observer):

INPUTS: A TA A and (Obs, Cost) a PDTA observer.
PROBLEM: ComputeCost(<A, Obs>).

C. Computing the Cost of a Given Timed Observer

The computation of optimal infinite schedules for TA has
been addressed in [19]. The main result of [19] is:

Theorem 6 (Minimal/Maximal Mean Cost [19]):Given a
PTA A, computingCostandCost is PSPACE-complete.
The definition of the cost of an observer is exactly the defi-
nition of the maximal mean cost in [19] and thus:

Theorem 7:Problem 8 is PSPACE-complete.

D. Optimal Synthesis Problem

Checking whether the mean cost of a given observer is less
thank requires that we have computed or are given such an
observer. A more difficult version of Problem 8 is to check
for the existence of cheap dynamic observer:

Problem 9 (Bounded Cost Dynamic Observer):
INPUTS: A TA A = (L, `0, X,Στ,f , E, Inv), ∆ ∈ N, µ a
resource andk ∈ N.
PROBLEM:
(A) Is there a dynamic observerD ∈ DTAµ s.t.A is (D,∆)-

diagnosable andCost(<A,D>) ≤ k ?
(B) If the answer to (A) is “yes”, compute a witness

dynamic observer?
We cannot provide of proof that Problem 9 is decidable.
However, we give a lower bound for Problem 9 and later
discuss the exact complexity.

Theorem 8:Problem 9 is 2EXPTIME-hard.

VII. C ONCLUSION

The results of the paper are summarized by the line “TA”
in Table I below.

TABLE I

SUMMARY OF THE RESULTS

Static Observers Dynamic Observers
Min. Cardinality Most Perm. Obs. Optimal Observer

DES NP-Complete [1] 2EXPTIME [1] 2EXPTIME [2]
TA PSPACE-Complete 2EXPTIME 2EXPTIME-hard

The complexity/decidability status of Problem 9 is left
open. A solution to this problem would be to solve the
following optimization problem on the class of S-PTGA:

Problem 10 (Optimal Infinite Schedule in S-PTGA):
INPUTS: A S-PTGA(A, Cost), a set ofBadstates andk ∈ N.
PROBLEM: Is there a strategyf for Player 1 inA s.t.f(A) (A
controlled byf) avoidsBad and satisfiesCost(f(A)) ≤ k?

REFERENCES

[1] F. Cassez, S. Tripakis, and K. Altisen, “Sensor minimization problems
with static or dynamic observers for fault diagnosis,” in7th Int. Conf.
on Application of Concurrency to System Design (ACSD’07). IEEE
Computer Society, 2007, pp. 90–99.

[2] ——, “Synthesis of optimal dynamic observers for fault diagnosis of
discrete-event systems,” inProceedings of the 1st IEEE & IFIP Inter-
national Symposium on Theoretical Aspects of Software Engineering
(TASE’07). IEEE Computer Society, 2007, pp. 316–325.

[3] F. Cassez and S. Tripakis, “Fault diagnosis with static and dynamic
diagnosers,”Fundamenta Informaticae, vol. 88, no. 4, pp. 497–540,
Nov. 2008.

[4] P. Ramadge and W. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 1202–1218, 1987.

[5] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete event systems,”IEEE Trans-
actions on Automatic Control, vol. 40, no. 9, Sept. 1995.

[6] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, “A polynomial
algorithm for testing diagnosability of discrete event systems,”IEEE
Transactions on Automatic Control, vol. 46, no. 8, Aug. 2001.

[7] T.-S. Yoo and S. Lafortune, “Polynomial-time verification of diagnos-
ability of partially-observed discrete-event systems,”IEEE Transac-
tions on Automatic Control, vol. 47, no. 9, pp. 1491–1495, Sept. 2002.

[8] S. Tripakis, “Fault diagnosis for timed automata,” inProceedings of
the International Conference on Formal Techniques in Real Time and
Fault Tolerant Systems (FTRTFT’02), ser. LNCS, W. Damm and E.-R.
Olderog, Eds., vol. 2469. Springer Verlag, 2002, pp. 205–224.

[9] P. Bouyer, F. Chevalier, and D. D’Souza, “Fault diagnosis using
timed automata,” inFoSSaCS, ser. LNCS, V. Sassone, Ed., vol. 3441.
Springer Verlag, 2005, pp. 219–233.

[10] F. Cassez, “Dynamic Observers for Fault Diagnosis of Timed Sys-
tems,” Mar. 2010, 8 pages, CoRR/abs arXiv:1006.4681 [cs.FL].

[11] R. Alur and D. Dill, “A theory of timed automata,”Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[12] F. Cassez, “A Note on Fault Diagnosis Algorithms,” in48th IEEE
Conference on Decision and Control and 28th Chinese Control Con-
ference. Shanghai, P.R. China: IEEE Computer Society, Dec. 2009.

[13] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit, “Timed control
with partial observability,” inProceedings of the 15th International
Conference on Computer Aided Verification (CAV’03), ser. LNCS,
W. A. Hunt, Jr and F. Somenzi, Eds., vol. 2725. Boulder, Colorado,
USA: Springer, July 2003, pp. 180–192.

[14] O. Finkel, “On decision problems for timed automata,”Bulletin of the
European Association for Theoretical Computer Science, vol. 87, pp.
185–190, 2005.

[15] S. Tripakis, “Folk theorems on the determinization and minimization
of timed automata,”Information Processing Letters, vol. 99, no. 6, pp.
222–226, 2006.

[16] R. Alur, L. Fix, and T. A. Henzinger, “A determinizable class of timed
automata,” inProceedings of the 6th International Conference on
Computer Aided Verification (CAV’94), ser. LNCS, vol. 818. Springer
Verlag, 1994, pp. 1–13.

[17] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. Vaandrager, “Minimum-cost reachability for priced
timed automata,” inProc. 4th International Workshop on Hybrid
Systems: Computation and Control (HSCC’01), ser. LNCS, vol. 2034.
Springer, 2001, pp. 147–161.

[18] R. Alur, S. La Torre, and G. J. Pappas, “Optimal paths in weighted
timed automata,” inProc. 4th Int. Work. Hybrid Systems: Computation
and Control (HSCC’01), ser. LNCS, vol. 2034. Springer, 2001, pp.
49–62.

[19] P. Bouyer, E. Brinksma, and K. G. Larsen, “Optimal infinite scheduling
for multi-priced timed automata,”Formal Methods in System Design,
vol. 32, no. 1, pp. 2–23, Feb. 2008.

