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Abstract

We study the monitoring and fault-diagnosis problems
for dense-time real-time systems, where observers (moni-
tors and diagnosers) have access to digital rather than ana-
log clocks. Analog clocks are infinitely-precise, thus, not
implementable. We show how, given a specification mod-
eled as a timed automaton and a timed automaton model
of the digital clock, a sound and optimal (i.e., as precise
as possible) digital-clock monitor can be synthesized. We
also show how, given plant and digital clock modeled as
timed automata, we can check existence of a digital-clock
diagnoser and, if one exists, how to synthesize it. Finally,
we consider the problem of existence of digital-clock diag-
nosers where the digital clock is unknown. We show that
there are cases where a digital clock, no matter how pre-
cise, does not exist, even though the system is diagnosable
with analog clocks. Finally, we provide a sufficient condi-
tion for digital-clock diagnosability.

1 Introduction

Monitoring and Fault-Diagnosis. In this paper we study
the problems ofmonitoringandfault diagnosisin the con-
text of real-time systems. In both problems the objective is
to synthesize anobserver, that is, a device that observes a
certain system (orplant) and infers some information about
this system.

In the monitoring problem, we want to know whether
the system satisfies a givenspecification. Here, the system
is black-box, that is, we have no information about how the
system behaves. Therefore, we cannot check that all be-
haviors of the system satisfy the specification. Rather, we
can observe the system during its execution and attempt to
check whether the observed behavior satisfies the specifi-
cation. This is the objective of the observer, which in this
case is called amonitor. Our goal is to synthesize a monitor
automatically from the specification.
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In the fault-diagnosis problem, we have a model of the
system, for instance, in the form of an (untimed or timed)
automaton. We also know that the system may produce
somefaults. However, these faults are not directlyobserv-
able, thus, their occurrence must be deduced from other
observations (this can be seen as agrey-boxsetting). The
objective of the observer, which in this case is called adi-
agnoser, is to detect whether a fault occurred or not, and
this as soon as possible after the fault happened. In this
case, before we attempt to synthesize a diagnoser, we must
first check existence of a diagnoser, calleddiagnosability.
Indeed, a diagnoser may not exist in cases where the system
can produce two behaviors, one faulty and the other non-
faulty, which appear the same to an external observer.

Monitoring and fault-diagnosis have been extensively
studied in “untimed” settings, for instance, where specifica-
tions and plants are given as finite automata. Then, synthe-
sizing a monitor simply means determinizingA (possibly
after “hiding” unobservableevents). Fault-diagnosis has
been first introduced in [10], where it was shown how to
check diagnosability and, in the case it holds, synthesize a
diagnoser.

More recently, these problems have also been studied in
areal-timesetting, where specifications and plants are given
as timed automata[2]. In particular, the monitoring prob-
lem has been studied, as a special case of theconformance
testing problemin [8, 9]. The fault-diagnosis problem has
been studied in [11, 5].

Implementability & Digital Clocks. Most of the above
works, however, consideranalog-clockobservers, that is,
observers that are capable of observing time as precisely
as necessary. For instance, such observers can distinguish
between an event occurring at timet = 1 or at timet >

1. Analog-clock observers are notimplementable, since the
above distinction cannot be made by any real clock. Indeed,
real clocks aredigital: they are counters that are updated
by some physical process. These counter can be consulted
(i.e., read) by the monitor. It is also possible to configure
the clock so as to send an event (e.g., aninterrupt) to the
program at every “tick”.

Our Contributions. In this paper, we study the monitoring
and fault-diagnosis problems in the case where observers
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Figure 1. Digital-clock observation architec-
ture.

only have access to digital clocks. The architecture we con-
sider is shown in Figure 1. The observer can be seen as
an untimed “machine” reacting to discrete events produced
by the plant and the discrete event “tick” produced by the
digital clock.

In the monitoring problem, the specification is given as
a timed automatonA over some alphabetΣ. The monitor
observes a subsetΣo ⊆ Σ. The digital clock is modeled
as a timed automatonADC over the eventtick. The objec-
tive is to synthesize a monitor which issoundandoptimal.
Soundness means intuitively that the monitor should not re-
ject behaviors that are conforming to the specification. We
show that care must be taken when formally defining this
notion.

Optimality means that the monitor is as precise as pos-
sible, that is, does not accept behaviors that are non-
conforming,except when it cannot do otherwise. Indeed,
the digital-clock monitor cannot be “perfect” in the sense
that it accepts preciselyL(A) (the timed language ofA).
This is because digital clocks are less precise than analog
clocks. Thus, two distinct timed behaviorsρ andρ′ may
appear the same to the monitor: ifρ is conforming andρ′

is non-conforming, a sound monitor has no choice but ac-
cepting both. On the other hand, the monitor should not be
trivial (i.e., accept everything). We define several notions of
optimality and show how to synthesize automatically opti-
mal monitors for each of these notions.

In the fault-diagnosis problem, the plant is given as a
timed automatonA overΣo∪{τ, f}. Σo models the observ-
able events,τ the unobservable events, andf the (unobserv-
able) fault. We consider three problems: (1) given plantA,
digital clockADC and time bound∆, check whether there
is a diagnoser that can detect any fault within∆ time units;
(2) givenA andADC check whether there is a diagnoser
for some∆; (3) givenA, check whether there is a diagnoser
for somedigital clockADC and some∆. We show how to
solve problems (1) and (2). Problem (3) is open. However,
we give an example that shows that existence of an analog-

clock diagnoser does not imply existence of a digital-clock
diagnoser, and this foranydigital-clock, no matter how pre-
cise it is. We also provide a sufficient (but not necessary)
condition for existence of a digital-clock diagnoser.

Related Work. The distinction between analog and digital
clocks has been made in [6] and subsequent work ondig-
itization of timed automata. Digitization studies how the
“sampling” semantics of timed automata (that is, the se-
mantics where only particular time delays are allowed, e.g.,
multiples of 1

n
) are related to its dense-time semantics. Al-

though related, this is not the same as our problem, where
we study theobservational capabilitiesof digital-clocks.

Digital clocks have been used for monitoring and testing
in in [8, 3]. We borrow from these works the idea to model
digital clocks as timed automata. Soundness and optimality
of monitors is not considered in these works, neither are the
problems of fault-diagnosis and synthesis of digital clocks.
Finally, digital clocks have been also used in [1] in the con-
text of timed automataimplementation.

Fault diagnosis with digital clocks has recently been con-
sidered independently in [7]. This work is restricted in sev-
eral ways compared to ours. First, it only considers digital
clocks that “tick” every[∆ ± δ] time units. In our frame-
work digital clocks are modeled as timed automata, which
can capture the above clocks and more (see Figure 2). Sec-
ond, in [7] the non-faulty behavior of the plant is modeled
as a deterministic timed automaton, whereas we allow the
plant to be non-deterministic (we also allow unobservable
events other than faults). Finally, the synthesis of a digital
clock (problem (3) above) is not considered in [7].

Outline of the paper. In section 2, we recall the basic def-
initions of timed words, timed automata and monitors and
diagnosers. In section 3, we study digital-clock monitoring.
Section 4 is devoted to digital-clock fault-diagnosis. Sec-
tion 5 concludes the paper.

2 Preliminaries

2.1 Clock constraints, timed words

Let N be the set of natural numbers,Z the set of integers,
Q the set of rationals andR the set of non-negative reals.

Let X be a set of variables taking values inR. In the
context of timed automata, a variable inX is called a clock.
An atomic clock constraint overX is an expression of the
form x#c, wherex ∈ X, c is a rational constant and# ∈
{<,≤,=,≥, >}. A convex clock constraint overX is a
conjunction of atomic clock constraints overX. A clock
constraint overX is a boolean expression of atomic clock
constraints overX. A valuation overX is a functionv :
X → R, assigning to each clock a value. Givenr ⊆ X,
v[r := 0] denotes the valuationv′ such that for allx ∈ r,



v′(x) = 0 and for ally ∈ X − r, v′(y) = v(y). ~0 denotes
the valuation assigning zero to each clock. A valuationv

satisfies a clock constraintg, writtenv |= g, if substituting
v(x) for everyx appearing ing yields a valid constraint.

Let Σ be a finite alphabet. A timed word overΣ is a
finite sequence of delays inR and letters inΣ: ρ ∈ (Σ ∪
R)∗. Every such sequence can be put in a canonical form by
summing up consecutive delays and adding initial and final
zero delays if necessary:ρ = t0 · a1 · t1 · a2 · t2 · · · an · tn.

We will define a set of projection functions on timed
words. The first can be seen as a projection ontoR:
Time(ρ) denotes the total amount of time spent inρ,
that is, Time(ρ) =

∑

i=0,...,n tn. The second is the
untiming projection: Unt(ρ) ∈ Σ∗ is the sequence of
letters a1 · · · an. Conversely, given a sequence of let-
tersa1 · · · an, Unt

−1(a1 · · · an) is the set of timed words
t0.a1.t1. · · · .an.tn with ti ∈ R. Finally, givenΣ′ ⊆ Σ,
ΠΣ′(ρ) is the timed word overΣ′ obtained fromρ by eras-
ing all events not inΣ′. For example, ifΣ = {a, b},
Σ′ = {a} andρ = 1 · a · 2 · b · 1 · b thenΠΣ′(ρ) = 1 · a · 3.
ProjectionsUnt andΠ can be naturally extended to sets of
timed words in the usual way.

Given two timed wordsρ1 ∈ (Σ1 ∪ R)∗ and ρ2 ∈
(Σ2 ∪ R)∗) the parallel compositionρ1||ρ2 is the set of
words ρ ∈ (Σ1 ∪ Σ2 ∪ R)∗ s.t. ΠΣ1

(ρ) = ρ1 and
ΠΣ2

(ρ) = ρ2. For example2.a||3.b = {2.a.1.b} and
2.a||2.b = {2.a.b, 2.b.a}. Given two sets of timed words
L1 ⊆ (Σ1 ∪ R)∗ andL2 ⊆ (Σ2 ∪ R)∗, theparallel compo-
sitionof L1 andL2 is L1||L2 = {ρ1||ρ2 |ρi ∈ Li}.

2.2 Timed automata

Let Σ be a finite alphabet. A timed automaton overΣ is
a tupleA = (Σ, Q,Q0, Qf ,X, I, E), where:

• Q is a finite set of locations,Q0 ⊆ Q is the set of initial
locations andQf ⊆ Q is the set of final locations.

• X is a finite set of clocks.

• I is the invariant function, associating to each location
q ∈ Q a clock constraint overX. We assume that
~0 ∈ I(q0) for all q0 ∈ Q0.

• E is a finite set of edges. Each edge is a tuple
(q, q′, a, g, r), whereq andq′ are the source and desti-
nation locations,a ∈ Σ is the label of the edge,g is a
clock constraint overX, called the guard of the edge,
andr ⊆ X is the set of clocks to reset to zero when
the edge is crossed.

A state ofA is a pair(q, v), whereq ∈ Q andv is a
valuation overX such thatv |= I(q). The set of initial
states ofA is S0 = {(q0,~0) | q0 ∈ Q0}. The set of final

states ofA is Sf = {(qf , v) | qf ∈ Qf}. Let SA denote the
set of all states ofA.

A discrete transition ofA is a triple (s, a, s′), where
s, s′ ∈ SA anda ∈ Σ, such that:s = (q, v), s′ = (q′, v′)
and there is an edgee = (q, q′, a, g, r) ∈ E, such thatv |= g

andv′ = v[r := 0]. If such a transition exists we write
s

a
→ s′. A time transition ofA is a triple(s, t, s′), where

s, s′ ∈ SA andt ∈ R, such that:s = (q, v), s′ = (q, v + t)
and for all0 ≤ t′ ≤ t, v + t′ ∈ I(q). If such a transition

exists we writes
t
→ s′. Notice that for all statess ∈ SA,

s
0
→ s′.
A run of A is a finite sequence of transitions:σ = s0

t0→

s1

a1→ s′1
t1→ · · ·

an→ s′n
tn→ sn+1, wheren ≥ 0. We say

that the run starts from states0 and reaches statesn+1. If
s0 ∈ S0 then we say that the statesn+1 is a reachable state.
The set of all reachable states ofA is denotedRA.

Every run like the one above has a corresponding timed
word, namely,t0a1t1 · · · antn. We denote bytw(σ) the
timed word corresponding to runσ. If s0 ∈ S0 and
sn+1 ∈ Sf then the run is accepting and the correspond-
ing timed word is accepted byA. The set of all timed words
accepted byA is the (timed) language ofA, denotedL(A).
The untimed language ofA, denotedUnt(A) is Unt(L(A)).

A states of A is callednon-Zenoif for all t ∈ R there
exists a runσ starting ats such thatTime(tw(σ)) ≥ t. A

is called non-Zeno if all its reachable states are non-Zeno.
Non-Zenoness means thatA cannot “block time”. Note that
this does not mean that all runs ofA let time progress (i.e.,
are non-Zeno) but rather that there is always the possibility
of letting time progress.

Given two timed automata A1 =
(Σ1, Q1, Q

0
1, Q

f
1 ,X1, I1, E1) and A2 =

(Σ2, Q2, Q
0
2, Q

f
2 ,X2, I2, E2), the parallel composition

of A1 and A2 denotedA1||A2, is the timed automaton
A = (Σ, Q,Q0, Qf ,X, I, E) defined as follows1:

• Σ = Σ1 ∪ Σ2.

• Q = Q1 × Q2, Q0 = Q0
1 × Q0

2 andQf = Q
f
1 × Q

f
2 .

• X = X1 ∪ X2.

• I(q1, q2) = I(q1) ∧ I(q2).

• E contains the following transitions:

– For eacha ∈ Σ1 ∩ Σ2, if (q1, q
′
1, a, g1, r1) ∈

E1 and (q2, q
′
2, a, g2, r2) ∈ E2 then e =

((q1, q2), (q
′
1, q

′
2), a, g1 ∧ g2, r1 ∪ r2) ∈ E. That

is, the two automata synchronize onΣ1 ∩ Σ2.

– For eacha ∈ Σ1 \ Σ2, if (q1, q
′
1, a, g1, r1) ∈ E1

thene = ((q1, q2), (q
′
1, q2), a, g1, r1) ∈ E.

1We assume neitherΣ1 norΣ2 contains the silent actionτ .



– For eacha ∈ Σ2 \ Σ1, if (q2, q
′
2, a, g2, r2) ∈ E2

thene = ((q1, q2), (q1, q
′
2), a, g2, r2) ∈ E.

It can be checked thatL(A1||A2) = L(A1)||L(A2).

3 Monitoring

3.1 Digital-clock automata: models of
digital clocks

A digital-clock automaton(DC-automatonfor short)
A is a non-Zeno timed automaton({tick}, Q,Q0, Qf =
Q,X, I,E). The tick event is a special event representing
one “tick” of the digital clock.

The idea of using timed automata to model digital clocks
has been introduced in [8] where it has been used for real-
time testing. The idea has also been used in [1] for imple-
mentation of timed automata.

To illustrate the concept, we borrow some examples of
digital-clock automata from the above works. These are
shown in Figure 2.A1

DC models a perfectly periodic dig-
ital clock with period1. A2

DC(ǫ) is an automaton param-
eterized byǫ, and models a clock with non-perfect period
1 ± ǫ. In this model errors may accumulate, so that the
i-th tick of the clock may occur anywhere in the interval
[(1 − ǫ)i, (1 + ǫ)i]. A3

DC(ǫ) models a more restricted be-
havior where errors do not accumulate: thei-th tick occurs
in the interval[i − ǫ, i + ǫ], for all i.

3.2 Digital-clock monitors

LetΣo be a finite alphabet such thattick 6∈ Σo. A digital-
clock monitorover alphabetΣo is a functionD : (Σo ∪
{tick})∗ → {0, 1}. The untimed language ofD is defined
asUnt(D) = {π ∈ (Σo∪{tick})∗ | D(π) = 1}. The timed
language ofD is defined asL(D) = Unt

−1(Unt(D)).
Digital-clock monitors accept or reject untimed words

in (Σo ∪ {tick})∗. Such words represent observations that
the monitor receives during its execution. These obser-
vations are sequences of: (a) observable events received
by the monitored plant; and (b)tick events received by
the (digital) clock of the system (i.e., computer) where the
monitor executes. More precisely, ifρ is a timed behav-
ior generated by the system under observation, and ifσ is
a timed behavior generated by the digital clock, thenD

receives an untimed observation inΠΣo
(Unt(ρ||σ)). In-

deed, ρ′ ∈ ρ||σ is a timed behavior corresponding to
some (non-deterministically chosen) interleaving ofρ and
σ. π = ΠΣo

(Unt(ρ′)) is the observation received by the
monitor whenρ′ occurs: real-time delays and unobservable
events are removed fromρ′ in order to obtainπ.

3.3 Soundness of digital-clock monitors

The monitor is supposed to check conformance to a spec-
ification. The latter is modeled as a timed automatonA over
Σ ⊇ Σo. A crucial property for monitors issoundness: if
ρ is a behavior inL(A), then the monitor should not re-
ject it (i.e., announce non-conformance whereas the timed
word is conform). A first attempt to capture soundness for
digital-clock monitors is given by the definition below. The
definition can be read as follows: “ifρ is a timed word of the
specificationL(A), then the untimed observable version of
ρ must be accepted by the digital-clock monitorD when the
latter executes in parallel with the digital clock automaton
ADC”.

Definition 1 (A first attempt to define soundness)Given
a timed automatonA, a digital-clock automatonADC and
a monitorD, we define the predicatesound1 as follows:

sound1(A,ADC ,D) ≡ ΠΣo
(L(A)) ⊆ ΠΣo

(L(D)||L(ADC))

This definition is not satisfactory as demonstrated by the
following example:

Example 1 LetΣo = Σ = {a}, L(A) = {2 · a · t | t ∈ R}
(i.e.,a occurs at time 2) andL(ADC) = {t1 · tick · t2 | t1 ∈
{1, 3}, t2 ∈ R} i.e. tick occurs either at time 1 or at time
3). Consider the monitorD such thatUnt(D) = {tick · a}.
We claim thatD is sound, according to predicatesound1.
Indeed,L(D) = {t1 · tick · t2 · a · t3 | ti ∈ R}. Thus,
L(D)||L(ADC) = {t1 ·tick ·t2 ·a ·t3 | t1 ∈ {1, 3}, t3 ∈ R}
and ΠΣo

(L(D)||L(ADC)) = {t1 · t2 · a · t3 | t1 ∈
{1, 3}, t2, t3 ∈ R} = {t1 · a · t2 | t1 ≥ 1, t2 ∈ R}. (i.e.,a
occurs at some point later than time1). Therefore, we have
ΠΣo

(L(A)) ⊆ ΠΣo
(L(D)||L(ADC)), as required by pred-

icatesound1. However, the above monitor does not conform
to our intuition of soundness (page 4). Indeed, consider the
timed word ofADC , ρADC

= 3 · tick. Executed together
with the only timed word ofA, ρ = 2 · a, this produces
the the untimed digital observationΠΣo

(Unt(ρ||ρADC
)) =

{a · tick}. The monitorD rejects it whereas it should have
accepted it if it were “sound” as stated p. 4. Note also that
taking1·tick for ρADC

leads the monitor to acceptρ = 2·a:
this lights on why sound1 does not capture what we want.

Actually the definition ofsound1 captures the following
fact: whenever a timed wordρ is in L, there is a behavior
of ADC that generatestick so that the digital monitor will
accept the untimed digital behavior. This means that if we
have a timed automatonADC that generates a unique timed
word, sound1 would be sufficient. But of course, we want
to model non deterministic and drifting clocks and the pre-
vious definition is not what we are looking for. We want our
digital monitor to be robust against the disturbances gener-
ated by the digital clock,i.e. that for any of its timed words,
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Figure 2. Digital-clock Automata

the monitor has a constant answer (in case of acceptance).
To remedy this problem, we provide arobustdefinition of
soundness.

Definition 2 (Robust definition of soundness)Given a
timed automatonA, a digital-clock automatonADC and a
monitorD, we define the predicatesound as follows:

sound(A,ADC ,D) ≡

∀ρ ∈ L(A).∀ρ′ ∈ L(ADC).ΠΣo
(Unt(ρ||ρ′)) ⊆ Unt(D)

This definition states precisely what we want, namely, that
for any behaviorρ which conforms to the specification
A, and for any possible behaviorρ′ of the digital clock,
the monitorD will accept any observation resulting from
these two behaviors. It can be shown thatsound is strictly
stronger thansound1.

Proposition 1 For any timed automatonA, for any digital-
clock automatonADC such thatL(ADC) 6= ∅, and for any
monitorD

sound(A,ADC ,D) ⇒ sound1(A,ADC ,D).

The following results are immediate consequences of Def-
inition 2: the first one that if a monitor is sound for a cer-
tain digital-clock then it remains sound for a “more deter-
ministic” digital-clock; the second one that a sound monitor
should at least accept the untimed language of the product
of A andADC .

Lemma 1 For any timed automatonA and digital-clock
automataA1

DC andA2
DC , and for any monitorD

sound(A,A1
DC ,D) ∧ L(A2

DC) ⊆ L(A1
DC) ⇒

sound(A,A2
DC ,D).

Lemma 2 Let D be such thatsound(A,ADC ,D). Then
ΠΣo

(Unt(L(A||ADC))) ⊆ Unt(D).

Now that we have a definition of sound digital-clock moni-
tors, it appears straightforward to define the following mon-
itoring problem.

Problem 1 (A first attempt to define a monitoring problem)
Given a timed automatonA and a digital-clock automaton
ADC , synthesize a monitorD such thatsound(A,ADC ,D).

This problem, however, has a trivial solution, namely, the
monitor that accepts all behaviors:D(σ) = 1 for all σ.
Therefore, we need to find some way to exclude such triv-
ial monitors. We do this by introducing, in the section
that follows, orders that allow us to speak of “better” or
“worse” monitors, and also to synthesizeoptimalmonitors
w.r.t. those orders.

3.4 Orders on monitors

Our aim is to synthesize “optimal” monitors. For this, we
need to introduce an order which captures that a monitor is
“better” than another monitor. We explore some possible
orders in this section.

A first possible choice is to compare the languages
accepted by the monitors using standard subset relation.
Given two monitorsD andD′,

D ⊆ D′ ≡ Unt(D) ⊆ Unt(D′).

Notice that this order is independent of the “application” in
question, namely, the specificationA and the digital clock
ADC . We proceed by defining an alternative order which
depends onA andADC .

We defineD ≤A,ADC D′ iff for any ρ ∈ L(A) and any
σ ∈ L(ADC), we have

ΠΣo
(Unt(ρ||σ)) ∩ Unt(D′) = ∅ ⇒

ΠΣo
(Unt(ρ||σ)) ∩ Unt(D) = ∅

The above formula states that an observation rejected by
D′ is also rejected byD, provided this observation can be
generated by some behaviorρ of A and some behaviorσ of
ADC .

It can be easily shown that ifD ⊆ D′ then for anyA and
ADC , D ≤A,ADC D′.



Definition 3 (Minimal and optimal monitors) LetD be a
class of monitors and let≺ be a partial order onD. A
monitorD ∈ D is said to beminimal in the classD with
respect to order≺ if it is a minimal element of(D,≺). D is
calledoptimal if it is the (unique) least element of(D,≺).

Problem 2 (Optimal digital-clock monitoring problem)
Given a timed automatonA, a digital-clock automaton
ADC , and≺∈ {⊆,≤A,ADC}, check whether there exists
and synthesize a monitorD such thatsound(A,ADC ,D)
andD is minimal or optimal with respect to≺.

3.5 Sound and optimal monitors

We now present a solution to the optimal digital-clock
monitoring problem, namely, we show how to construct a
monitor which is sound (with respect to thesound predi-
cate) and also optimal with respect to any of the orders in-
troduced above.

Consider a timed automatonA and a digital-clock au-
tomatonADC . Define the automatonA0 to be a finite state
automaton that accepts the languageΠΣo

(Unt(A||ADC)).
This automatonA0 can be obtained in the following way:

1. Construct the parallel productA′ = A||ADC . The fi-
nal locations ofA′ are the pairs(l, l′) with l a final
location ofA.

2. Build an abstract graphA0 that preserves the untimed
language ofA′. A0 can be theregion graph[2], the
time-abstracting bisimulation graph[12], or thezone
graph [4, 13] of A′. These graphs are finite-state au-
tomata. Their transitions are labeled with letters in
Σ∪{tick}. In the case of the region or time-abstracting
bisimulation graphs, some transitions are labeled with
ǫ, a special label denoting the passage of time. Each
state ofA0 is labeled with a location of timed automa-
ton A′. The final states ofA0 are the states labeled by
a final location ofA′ .

3. Replace all labels inΣ − Σo by ǫ. This gives the pro-
jection ontoΣo.

We define the digital monitorD0 as follows:D0(u) = 1 iff
u is accepted byA0. A property of the region automatonA0

is thatu ∈ L(A0) ⇔ ∃ρ ∈ L(A′) s.t.ΠΣo
(Unt(ρ)) = u. It

is then easy to prove that:

Proposition 2 (Soundness)For any timed automatonA,
for any digital-clock automatonADC ,

sound(A,ADC ,D0).

Proposition 3 (Optimality) Consider a timed automaton
A and a digital-clock automatonADC . Let D be a mon-
itor such thatsound(A,ADC ,D). Then

D0 ⊆ D andD0 ≤A,ADC D

Remark 1 Proposition 3 does not hold for predicate
sound1. Indeed, consider the monitorD described in Ex-
ample 1, which is sound w.r.t.sound1. We haveL(D0) =
{tick·a, a·tick}, whereasL(D) = {tick·a}. Thus,D ⊆ D0,
which means thatD0 is not optimal w.r.t.⊆ andsound1.

Remark 2 The automatonA0 described above can be de-
terminised using the usual subsets construction. This way,
D0 is just a Moore version ofA0 where the final states of
A0 are labeled with1 and the other states with0.

4 Fault diagnosis

The fault-diagnosis2 problem has been introduced and
studied in the untimed setting of discrete-event systems
in [10] and extended to the timed automata setting with
analog-clock (i.e., infinite-precision) diagnosers in [11].
Here, we study the problem in the timed automata setting
but with digital-clock diagnosers.

Fault diagnosis is similar to monitoring. The main differ-
ences are two. First, the plant under observation is not en-
tirely black-box. A model of the plant is available, but this
model contains unobservable actions. Some of these unob-
servable actions model faults that may occur in the plant.
The goal of the diagnoser is to detect whether a fault has
occurred and, in the case where there are many different
types of faults, to identify which fault occurred. The second
difference with monitoring is that the diagnoser must an-
nounce a fault within a bounded, albeitunknown a-priori,
delay after the fault occurred. Thus, the plant is supposed
to continue execution forever, and the diagnoser’s task is to
detect faults if possible, and as soon as possible.

These two differences imply that, contrary to monitor-
ing, synthesis of a diagnoser is not always possible. This
is the case when the plant contains two distinct behaviors,
one faulty and the other non-faulty, which produce the same
observation as far as the diagnoser is concerned. That, the
first task is to checkdiagnosability, that is, the existence of
a diagnoser. If diagnosability holds, then a diagnoser can be
synthesized.

For simplicity, we are going to consider the case of a
single type of faults. The results can be easily extended to
the case of multiple different types of faults.

4.1 Digital-clock diagnosers

The plant is modeled as a timed automatonA over
Σ = Σo ∪ {τ, f}, whereτ, f 6∈ Σo: τ models unobservable
events which are not faults;f models the faults, which are
also unobservable;Σo models the observable events. We
assume that all locations ofA are accepting. That is, the

2A better term would be faultdetection, but we use the term introduced
in [10] for reasons of tradition.



language ofA is prefix-closed. This is in accordance with
the interpretation given above, namely, that the plant is ex-
pected to continue execution and the objective is to detect
faults after some bounded delay.

Let ρ be a timed word in(Σ ∪ R)∗. ρ is said to benon-
faulty if the letterf does not appear inρ, that is,Π{f}(ρ) =
Time(ρ). Otherwise,ρ is said to befaulty. Let ∆ ∈ N. ρ is
said to be∆-faulty if there existρ1 ∈ (Σ \ {f})∗ andρ2 ∈
(Σ∪R)∗ such thatρ = ρ1 · f · ρ2 andTime(ρ2) ≥ ∆. That
is, if ρ is ∆-faulty then at least∆ time units have elapsed
after the occurrence of the first fault inρ.

Definition 4 (Digital-clock diagnoser) Let ADC be a
digital-clock automaton and let∆ ∈ N. A (ADC ,∆)-
diagnoser forA is a total function

D : (Σo ∪ {tick})∗ → {0, 1}

such that:

• for anyπ, π′ ∈ (Σo ∪ {tick})∗,
if D(π) = 1 thenD(π · π′) = 1, and

• for anyρ ∈ L(A) and anyσ ∈ L(ADC),
if Time(ρ) = Time(σ), then

– if ρ is non-faulty then
∀π ∈ ΠΣo

(Unt(ρ||σ)).D(π) = 0,

– if ρ is ∆-faulty then
∀π ∈ ΠΣo

(Unt(ρ||σ)).D(π) = 1.

In other words, a(ADC ,∆)-diagnoser must announce 0
(i.e., “no fault detected”) for any behavior that is non-faulty,
no matter what the behavior of the digital clock is: this is
a soundness requirement. On the other hand, a(ADC ,∆)-
diagnoser must announce 1 (i.e., “fault detected”) for any
behavior that is faulty, provided at least∆ time units have
elapsed after the first fault: this is a liveness requirement.
No requirement is made for faulty behaviors where less than
∆ time units have elapsed after the fault. However, the first
requirement ensures that the diagnoser does not “change its
mind” once it has announced a fault.

A is said to be(ADC ,∆)-diagnosableif there exists
a (ADC ,∆)-diagnoser forA. A is said to beADC-
diagnosableif there exists∆ ∈ N such thatA is (ADC ,∆)-
diagnosable.A is said to bedigital-clock diagnosableif
there existsADC such thatA is ADC-diagnosable.
The following result is the counterpart of Lemma 1 for di-
agnosis, and the proof is straightforward.

Lemma 3 For any timed automatonA, for any digital-
clock automataA1

DC and A2
DC , for any ∆1,∆2, if D is

a (A1
DC ,∆1)-diagnoser forA, L(A2

DC) ⊆ L(A1
DC) and

∆2 ≥ ∆1, thenD is also a(A2
DC ,∆2)-diagnoser forA.

•

x ≤ p

tick ; x = p ; x := 0

Figure 3. The digital-clock A
p
DC: a perfectly

periodic clock with period p.

Consider the digital-clock automatonAp
DC shown in

Figure 3. A
p
DC is a generalization of automatonA1

DC of
Figure 2.Ap

DC models a perfectly-periodic clock with pe-
riod p. We say thatA is p-diagnosableiff A is A

p
DC-

diagnosable. The lemma below states that a periodic clock
that “ticks” k times faster than another clock is better for
diagnosability, that is, if diagnosability holds for the slower
clock it will also hold for the fast clock.

Lemma 4 Consider the digital-clock automatonAp
DC

shown in Figure 3. For any timed automatonA, for any
p1, p2, if p1 = k · p2 for somek ∈ N, and A is p1-
diagnosable, thenA is alsop2-diagnosable.

With these definitions, we can define a set of problems.

Problem 3 ((ADC ,∆)-diagnosability problem) Given
A,ADC ,∆, check whether there exists a(ADC ,∆)-
diagnoser forA.

Problem 4 (ADC-diagnosability problem) Given
A,ADC , check whether there exists∆ such that there
exists a(ADC ,∆)-diagnoser forA.

Problem 5 (Diagnosability problem) Given A, check
whether there existADC and ∆ such that there exists a
(ADC ,∆)-diagnoser forA.

In each of the problems above, in the case where a diag-
noser exists, we would also like to synthesize one.

4.2 Solution to the (ADC ,∆)-diagnosability
problem

Proposition 4 (Necessary and sufficient condition for
(ADC ,∆)-diagnosability) Let A be any timed automaton,
let ADC be a digital-clock automaton and let∆ ∈ N. A

is (ADC ,∆)-diagnosable iff for all non-faultyρ ∈ L(A),
∆-faultyρ′ ∈ L(A), σ, σ′ ∈ L(ADC) the following holds:

(

Time(ρ) = Time(σ) ∧ Time(ρ′) = Time(σ′)
)

⇒

ΠΣo
(Unt(ρ||σ)) ∩ ΠΣo

(Unt(ρ′||σ′)) = ∅

We now present an algorithmic method to check the
necessary and sufficient condition given above. First, let



• • bad
f ; z := 0 τ ; z ≥ ∆

f f

Figure 4. Observer automaton Obs(∆).

Obs(∆) be the timed automaton of Figure 4. It is an au-
tomaton parameterized by∆ and the accepting state isbad.
Second, letA = (Σ, Q, q0, Q,X, I, E). We define the
timed automatonAf overΣ as follows:

1. the locations ofAf are{qf | q ∈ Q} ∪ {q¬f | q ∈ Q};
Let Qf be the set of non-faulty locations (qf locations)
andQ¬f be the set of non-faulty locations (q¬f loca-
tions). The idea is that locations inQf encode the fact
that a fault has occurred. The initial locations ofAf

are the non-faulty locations. The accepting locations
of Af are the faulty locations.

2. the set of clocks ofAf is X;

3. the initial state ofAf is q0f ;

4. the transition function is defined as follows: for each
edge(q, q′, a, g, r) ∈ E with a 6= f we create two
edges inAf , (qf , q′f , a, g, r) and(q¬f , q′¬f , a, g, r). If
a = f we create(qf , q′f , f, g, r) and(q¬f , q′f , a, g, r)
(the target location must be a faulty location);

5. the invariant ofAf for qp is the same as forq in A.

Third, letP = (Af ||Obs(∆))||ADC . That is,P is the par-
allel composition ofAf , Obs(∆) andADC , whereAf and
Obs(∆) synchronize on thef label, while all three automata
synchronize on the passage of time.P accepts all the inter-
leavings of (1)∆-faulty timed words ofA and (2) timed
words ofADC .

Fourth, letA¬f be a copy ofA with all f -labeled transitions
removed. Finally, letP ′ = A¬f ||ADC . P ′ accepts all the
interleavings of (1) non faulty timed words ofA and (2)
timed words ofADC .

Proposition 5 A is (ADC ,∆)-diagnosable iff
ΠΣo

(Unt(P )) ∩ ΠΣo
(Unt(P ′)) = ∅.

The condition of Proposition 5 can be checked algorith-
mically. Indeed,Unt(P ) andUnt(P ′) are regular languages
accepted by finite-state automata which can be constructed
as explained in subsection 3.5. The projectionΠΣo

(L) of
a regular languageL is regular and it is accepted by an au-
tomaton obtained from the automaton acceptingL by re-
placingτ andf labels byǫ.

4.3 Solution to the ADC-diagnosability
problem

The above algorithm works for a given∆. However, as
mentioned in the introduction,∆ is a-priori unknown. In
this section, we show how to checkADC-diagnosability,
where∆ is unknown. To do this, we need some definitions
first.

An infinite timed word overΣ is an infinite sequence of
delays inR and letters inΣ: ρ ∈ (Σ ∪ R)ω. Every such
sequence can be put in a canonical form where delays and
letters alternate:ρ = t0 · a1 · t1 · a2 · t2 · · · . Terminol-
ogy and operators that we introduced for finite words can
be extended to infinite words in a straightforward way. For
instance, we can speak about faulty infinite timed words, if
f appears in them. We can also extend the projection and
untiming operators.

Consider a timed automatonA. An infinite run ofA is an
infinite sequence of transitions,σ = s0

t0→ s1

a1→ s′1
t1→ · · · ,

such that every finite prefix ofσ is a run ofA ands0 is an
initial state ofA. The run is called non-Zeno if

∑

i ti = ∞.
The run is called accepting if it visits accepting locations
infinitely often. The set of all infinite timed words corre-
sponding to infinite, non-Zeno, accepting runs ofA is de-
notedL∞(A).

Proposition 6 (Necessary and sufficient condition for
ADC-diagnosability) Let A be a non-Zeno timed automa-
ton and letADC be a digital-clock automaton.A is ADC-
diagnosable iff there do not existρ, ρ′ ∈ L∞(A) and
σ, σ′ ∈ L∞(ADC) such that the following hold:

• ρ is faulty andρ′ is non-faulty,

• ΠΣo
(Unt(ρ||σ)) ∩ ΠΣo

(Unt(ρ′||σ′)) 6= ∅.

As previously, the above necessary and sufficient condi-
tion serves as the basis for an algorithm. LetP = Af ||ADC

andP ′ = A¬f ||ADC , whereAf andA¬f are constructed
as described above.

Proposition 7 A is ADC-diagnosable iff
ΠΣo

(Unt(L∞(P ))) ∩ ΠΣo
(Unt(L∞(P ′))) = ∅.

The condition of Proposition 7 can be checked algorith-
mically, using a similar method as the one for checking the
condition of Proposition 5.

4.4 On the existence of digital-clock diag-
nosers

To illustrate the interest of Problem 5, consider the timed
automaton shown in Figure 5. This automaton is diagnos-
able in the sense of [11], that is, with analog clock diag-
nosers. Indeed, the diagnoser expectsa to occur at most 1
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Figure 5. A plant which is not digital-clock di-
agnosable.

time unit after the beginning of operation. If it does not, the
diagnoser is certain that a fault has occurred. Notice that,
since the diagnoser is analog-clock, it can distinguish be-
tween any two observationst1 · a andt2 · a, wheret1 ≤ 1
and t2 > 1, no matter how closet1 and t2 are. The first
observation is the result of a non-faulty behavior, whereas
the second observation is the result of a faulty behavior.

Proposition 8 The timed automaton shown in Figure 5 is
not digital-clock diagnosable.

Proof: Let ∆ ≥ 2. Consider a digital-clock automaton
ADC and letρ′ ∈ L(ADC) such thatTime(ρ′) = ∆. Let
n be the number oftick events appearing inρ′ until time 1
(including time 1) and letm be the number oftick events
appearing inρ′ strictly later than time 1. There are two cases
to consider: eitherm = 0, that is, notick appears after time
1 in ρ′; or m > 0.

In the casem = 0, we sett′ = 1.5. In the casem > 0,
let t > 1 be the first moment after time1 that atick event
appears inρ′ and let1 < t′ < t. Consider the following two
behaviors of the timed automaton of Figure 5:

ρ1 = t′ · f · a · ∆, (1)

ρ2 = 1 · τ · a · ∆. (2)

We claim that:
tick

n · a · tickm ∈ ΠΣo
(Unt(ρ1||ρ

′)) ∩ ΠΣo
(Unt(ρ2||ρ

′)).
It is clear thattickn · a · tick

m ∈ ΠΣo
(Unt(ρ1||ρ

′)). It is
also true thattickn · a · tickm ∈ ΠΣo

(Unt(ρ2||ρ
′)). Indeed,

even if then-th tick occurs exactly at time 1, the semantics
of || are such that both interleavingsa · tick andtick · a are
included.

The point is that the digital-clock diagnoser cannot tell
whethera occurred exactly at time 1 or at time strictly
greater than 1, that is, it cannot distinguish betweenρ1 and
ρ2. Thus, according to Proposition 4, the timed automaton
of Figure 5 is not(ADC ,∆)-diagnosable.

We do not know whether Problem 5 is decidable. In the
rest of this section, we provide a sufficient condition for
existence of digital-clock diagnosers.

Consider a TAA and letρ, ρ′ ∈ L∞(A). Let ΠΣo
(ρ) =

t0 · a1 · t1 · a2 · t2 · · · andΠΣo
(ρ′) = t′0 · a

′
1 · t

′
1 · a

′
2 · t

′
2 · · · .

SupposeΠΣo
(Unt(ρ)) = ΠΣo

(Unt(ρ′)), that is, a1 =
a′
1, a2 = a′

2, .... Let date(i, ρ) denote the absolute time
that the observable eventai occurs, that is,date(i, ρ) =
∑

k=0,...,i−1
tk. Similarly, date(i, ρ′) =

∑

k=0,...,i−1
t′k.

Givenǫ > 0, we define the following predicate:

closeǫ(ρ, ρ′) = ∀i . |date(ai, ρ) − date(ai, ρ
′)| ≤ ǫ. (3)

That is,closeǫ(ρ, ρ′) holds iff the corresponding observable
events inρ andρ′ are not separated by more thanǫ time
units.

Proposition 9 (Sufficient condition for digital-clock di-
agnosability) A is digital-clock-diagnosable if the follow-
ing condition holds: there existsǫ ∈ R, ǫ > 0, such that
for all ρ, ρ′ ∈ L∞(A), if ρ is non-faulty,ρ′ is non-faulty
andΠΣo

(Unt(ρ)) = ΠΣo
(Unt(ρ′)), then¬closeǫ(ρ, ρ′). In

particular, A is ǫ
2
-diagnosable.

If the condition of Proposition 9 is true, then “sampling”
with a periodǫ

2
is sufficient to diagnoseA. Intuitively, this

is because for every two behaviors that yield identical ob-
servations onΣo, there will be atick that “separates” the
observable events in the two behaviors, thus allowing to dis-
tinguish them.

The condition of Proposition 9 is sufficient but not nec-
essary. Indeed, consider the example of Figure 6, which is
a slight modification of the example of Figure 5. This au-
tomaton is digital-clock diagnosable: it suffices to take a
digital-clock that producestick at time 1. Then, ifa · tick

is observed, the diagnoser knows that no fault occurred; if
tick · a is observed, a fault occurred. However, the condi-
tion of Proposition 9 does not hold for this example. In-
deed, for anyǫ > 0, we can takeρ = τ · (1 − ǫ

2
) · a and

ρ′ = f · (1 + ǫ
2
) · a, such thatcloseǫ(ρ, ρ′).

5 Conclusions and perspectives

We have studied monitoring and fault-diagnosis prob-
lems for real-time systems, where observers only have ac-
cess to digital (i.e., finite-precision) clocks. We have pre-
sented a framework where digital clocks are modeled as
timed automata, and so are specifications (for monitoring)
or plants (for fault-diagnosis). We have shown how sound
and optimal monitors can be automatically synthesized,
given specification and digital-clock models. We have also
shown how to check diagnosability and, in case it holds,
automatically synthesize a diagnoser, for given plant and
digital-clock models. Finally, we have shown that there are
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Figure 6. The condition of Proposition 9 is not
necessary for digital-clock diagnosability.

cases where no digital clock, no matter how precise, can be
used to diagnose a plant, even though the latter is diagnos-
able with an analog-clock.

An interesting question remains, namely, whether the
problem of checking existence of such a digital clock is de-
cidable. Another research direction is to study controller
synthesis with digital-clock controllers.
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